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Kinematics of Machinery

Chapter

POSITION ANALYSIS

Theory is the distilled essence of practice
RANKINE

4.0 INTRODUCTION

Once a tentative mechanism design has been synthesized, it must then be analyzed. A
principal goal of kinematic analysis is to determine the accelerations of all the moving
parts in the assembly. Dynamic forces are proportional to acceleration, from Newton’s
second law. We need 1o know the dynamic forces in order to calculate the stresses in the
components. The design engineer must ensure that the proposed mechanism or machine
will not fail under its operating conditions. Thus the stresses in the materials must be
kept well below allowable levels. To calculate the stresses, we need to know the static
and dynamic forces on the parts. To calculate the dynamic forces, we need to know the
accclerations. In order to calculate the nccelerations, we must first find the positions of
all the links or elements in the mechanism for each increment of input motion, and then
differentiate the position equations versus time to find velocities, and then differentiate
again to obtain the expressions for acceleration. For example, ina simple Grashof fourbar
linkage, we would probably want to calculate the positions, velocities, and accelerations
of the output links {coupler and rocker) for perhaps every two degrees (180 positions) of
input crank position for one revolution of the crank.

This can be done by any of scveral methods. We could usc a graphical approach to
determine the position, velocity, and acceleration of the output links for all 180 positions
of interest, or we could derive the general equations of motion for any position, differ-
entiate for velocity and acceleration, and then solve these analytical expressions for our
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180 (or more) crank locations. Acomputer will make this latter task much more palatable.
If we chouse Lo use Lhe graphical approach to analysis, we will have o do an independent
graphical solution for each of the positions of interest. None of the information obtained
graphically for the first position will be applicable to the second position or to any oth-
ers. In contrast, once the analytical solution is derived for a particular mechanism, it
can be quickly solved (with a computer) for all positions. If you want information for
more than 180 positions, it only means you will have to wait longer for the computer to
generate those data. The derived equations are the same. So, have another cup of coffee
while the computer crunches the numbers! In this chapter, we will present and derive
analytical solutions to the position analysis problem for various planar mechanisms. We
will also discuss graphical solutions which are useful for checking your analytical results
In Chapters 6 and 7 we will do the same for velocity and acceleration analysis of planar
mechanisms.

It is interesting to note that graphical position analysis of linkages is a truly trivial
exercise, while the algebraic approach to position analysis is much more complicated.
If you can draw the linkage to scale, you have then solved the position analysis problem
graphically. It only remains to measure the link angles on the scale drawing to protractor
accuracy. But the converse is true for velocity and especially for acceleration analyxis.
Analytical solutions for these are less complicated to derive than is the analytical position
solution. However, graphical velocity and acceleration analysis becomes quite complex
and difficult. Moreover, the graphical vector diagrams must be redone de novo (meaning
litcrally from new) for cach of the linkage positions of intercst. This is a very tedious
exercise and was the only practical method aveilable in the days B.C. (Before Computer),
mt 5o long ago. The proliferation of inexpensive microcompulers in recent years has
truly revolutionized the practice of engineering. As a graduate engineer, you will never
be far from a computer of sufficient power to solve this type of problem and may even
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* Note that a two-argument
arctangent function must
be used 1o obtain angles

in &ll four quadrants. The
single-argument arctangent
function found in most
calculators and computer
programming languages
returns angle values in only
the first and fourth quad-
rants. You can calculate
your own two-ergument
arctangent function very
easily by testing the sign of
the x compoenent of the ar-
guments and, if x is minus,
adding n radians or 180° 1o
the result obtained from the
available single-argument
arctangent function.

For example (in Fortran):

FUNCTION Atan2( x,y )
Fx<0THENQ=v/x
Temp = ATANQ)
IF x < 0 THEN

Atan2 = Temp + 3.14159
ELSE

Atan2 = Temp
ENDIF
RETURN
END

The sbove code assumes
that the language used has
# buill-in single-argument
arctangent function called
ATAN(x) which returns an
angle berween + /2 radians
when given a signed argn-
ment representing the value
of the tangent of that angle.
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have one in your pocket. Thus, in this text we will emphasize analytical solutions which
are easily solved with a microcomputer. The compuler programs provided with this text
use the same analytical techniques as derived in the text.

4.1 COORDINATE SYSTEMS

Coordinate systems and reference frames exist for the convenience of the engineer who
defines them. In the next chapters we will provide our systems with multiple coordinate
systems as needed, to aid in understanding and solving the problem. We will denote
one of these as the global or absolute coordinate system, and the others will be local
coordinate systems within the global framework. The global system is often taken to he
attached to Mother Earth, though it could as well be attached to another ground plane such
as the frame of an automobile. If our goal is to analyze the motion of a windshield wiper
blade, we may not care to include the gross motion of the automobile in the analysis. In
that casc a global coordinatc system (GCS—dcnotcd as X,¥) attached to the car would be
uscful, and we could consider it to be an absolute coordinate systcm. Even if we usc the
carth as an absolute reference frame, we must realize that it is not stationary either, and
as such is not very useful as a referencs frame for 4 space probe. Though we will speak
of absolute positions, velocities, and accelerations, keep in mind that ultimately, until we
discover some stationary point in the universe, all motions are really relative. The term
inertial reference frame is used to denote a system which itself has no acceleration.
All angles in this text will be measured according to the right-hand rule. That is, coun-
terclockwise angles, angular velocities, and angular accelerations are positive in sign.

Local coordinate systems are typically attached to a link at some point of interest.
This might be a pin joint, a center of gravity, or a line of centers of a link. These local
coordinate systems may be either rotating or nonrotating as we desire. If we want to
measure the angle of a link as it rotates in the global system, we probably will want to
attach a local nonrotating coordinate system (LNCS—denoted as x, y) to some point on
the link (say a pin joint). This nonrotating system will move with its arigin on the link
but remains always parallel to the global system. If we want to measure some parameters
within a link, independent of its rotation, then we will want to construct a local rotating
coordinate system (LRCS—denoted as x', ") along some line on the link. This system
will both move and rotate with the link in the global system. Most often we will need to
have both types of local coordinate systems (LNCS and LRCS) on our moving links to
do a complete analysis. Obviously we must define the angles and/or positions of these
moving, local coordinate systems in the global system at all positions of interest.

4.2 POSITION AND DISPLACEMENT

Position

The position of a point in the plane can be defined by the use of a position vector as
shown in Figure 4-1. 'The choice of reference axes is arbitrary and is selected to suit the
observer. Figure 4-1a shows a point in the plane defined in a global coordinate system
and Figure 4-1b shows the same point defined in alocal coordinate system with its origin
coincident with the global system A two-dimensional vector has two attributes, which
can be expressed in either polar or cartesian coordinates. The polar form provides the
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FIGURE 4-1

A position vector In the plane - expressed in both glooal and local coordinates

magnitude and the angle of the vector. The cartesian form provides the X and ¥ compo-
nents of the vector. Each form is directly convertible into the other by*

the Pythagorean theorem:
Ry =R} +R}
and trigonometry: (4.09)

8= mtan(k—r]
Rx
Equations 4.0a are shown in global coordinates but could as well be expressed in local
coordinatcs.

Coordinate Transformation

It is often necessary to transform the coordinates of a point defined in one system to co-
ordinates in another. If the system’s origins are coincident as shown in Figure 4-1b and
the required transformation is a rotation, it can be expressed in terms of the original coor-
dinates and the signed angle & between the coordinate systems. If the position of point A
in Figure 4-1b is expressed in the local xy system as R, R,, and it is desired to transform

its coordinates to Ry, Ry in the global XY system, the equations are:
Ry =R, cosb- Rysind
. (4.0b)
Ry =R, sin3+ R, cosd

Displacement

Displacement of a point is the change in its position and can be defined as the straight-
line distance between the initial and final position of a point which has moved in the refer-
ence frame. Note that displacement is not necessarily the same as the path length which
the point may have traveled to get from its initial to final position. Figure 4-2a shows a
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Path

forl).

(b)

FIGURE 4-2
Position difference and relative position

point in two positions, A and B. The curved line depicts the path along which the point
traveled. The position vector R, defines the displacement of the point B with respect to
point A. Figure 4-2b defines this situation more rigorously and with respect to a reference
frame XY. The notation R will be used to denote a position vector. The vectors R4 and Ry
definc, respectively, the absolutc positions of points A and B with respect to this global XY
reference frame. The vector R4 denotes the difference in position, or the displacement,
between A and B. This can be expressed as the position difference equation:

Ry, =R;-R, (4.1a)

This expression is read: The position of B with respect to A is equal to the (ahsolute)
position of B minus the {absolute) position of A, where absolute means with respect to the
origin of the global reference frame. This expression could also be written as:

RﬁA =RRO_RA() (4.1b)

with the second subscript O denoting the origin of the XY reference frame. When a
position vector is rooted at the origin of the reference frame, it is customary to omit the
second subscript. It is understood, in its absence, to be the origin. Also, a vector referred
to the origin, such as Ry, is often called an absolute vector. This means that it is taken
with respect to a reference frame which is assumed to be stationary, e.g., the grmound. Tt
is important to realize, however, that the ground is usually also in motion in some larger
frame of reference. Figure 4-2c shows a graphical solution to equations 4.1.
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In our example of Figure 4-2, we have tacitly assumed so far that this point, which is
first located at A and later at B, is, in fact, the same particle, moving within the reference
frame. It could be, for example, one automobile moving along the road from A to B. With
that assumption, it is conventional to refer to the vector Ry, as a position difference.
There is, however, ancther situation which leads to the same diagram and equation but
needs a different name. Assume now that points A and B in Figure 4-2b represent not
the same particle but two independent particles moving in the same reference frame, as
perhaps two automobiles traveling on the same road. The vector equations 4.1 and the
diagram in Figure 4-2b still are valid, but we now refer to Rz, as a relative position, or
apparent position. We will use the relative position term here. A more formal way to
distinguish between these two cases is as follows:

CASEL One body in two successive positions => position difference
CASE 2: Two bodies simultaneously in separate positions => relative position

This may seem a rather fine peint to distinguish, but the distinction will prove useful,
and the reasons for it more clear, when we analyze velocities and accelerations, especially
when we encounter (Case 2 type) situations in which the two bodies occupy the same
position at the same time but have different motions.

43 TRANSLATION, ROTATION, AND COMPLEX MOTION

So far we have been dealing with a particle, or point, in plane motion. It is more interest-
ing to consider the motion of a rigid body, or link, which involves both the positicn of a
point on the link and the orientation of a line on the link, sometimes called the POSE of
thelink Figure 4-3a (p. 180) shows a link AB denoted by a position vector Rg4. An axis
system has been set up at the root of the vector, at point A, for convenience.

Transiation

Figure 4-3b shows link AB moved to a new position A’B’ by translation through the
displacement AA” or BB “which are equal, i.e., R4, =Rpp-

A definition of translation is:
All points on the body have the same displacement.

As a result the link retains its angular orientation. Note that the translation need not
be along a straight path. The curved lines from A to A" and B to B’ are the curvilinear
translation path of the link. Thereis no rotation of the link if these paths are parallel. If
the path happens to be straight, then it will be the special casc of rectilinear translation,
ard the path and the displacement will be the same.

Rotation

Figure 4-3c shows the same link AB moved from its original position at the origin by
rotation through an angle. Point A remains at the origin, but B moves through the position
difference vector Ry5 =Rz, -Ry, .
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Rgqy — Rpa

Rga

(o)) (b)

(c) (d)

FIGURE 4-3
Transiation, rotation, and compiex motion

A definition of rotation is:

Different points in the body undergo different displacements and thus there is a displace-
ment difference between any two points chosen.

The link now changes its angular orientation in the reference frame, and all points have
different displacements.

Complex Motion

The general cas¢ of complex motion is the sum of the translation and rotation compo-
nents. Figure 4-3d shows the same link moved through both a translation and a rotation.
Note that the order in which these two components are added is immaterial. The resulting
complex displacement will be the same whether you first rotate and then translate ar vice
versa. 'This is so because the two factors are independent. 'The total complex displace-
ment of point B is defined by the following expression:
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Total displacement = translation component + rotation component
Rgp= RB'B +R g 4.1¢)

The new absolute position of point B referred to the origin at A is:
RB’A = RA'A +RB'A’ (4ld)

Note that the above two formulas are merely applications of the position difference
equation 4.1a (p. 178). See also Section 2.2 (p. 31) for definitions and discussion of
rotation, transiation, and complex motion. These motion states can be expressed as the
following theorems.

Theorems

Euler’s theorem:

The general displacement of a rigid hody with one poin fixed is a rotatinn about some
axis.

This applies to pure rotation as defined above and in Section 2.2 (p. 31). Chasles
(1793-1880) provided a corollary to Euler’s theorem now known as:

Chasles’ theorem:6)*

Any displacement of a rigid body is equivalent to the sum of a translation of any one point
on that body and a rotation of the body about an axis ihrough that poins.

This describes complex motion as defined above and in Section 2.2, Note that equation
4.1c is an expression of Chasles’ theorem.

44  GRAPHICAL POSITION ANALYSIS OF LINKAGES

For any one-DOF linkage, such as a fourbar, only one parameter is needed to completely
define the positions of all the links. The parameter usually chosen is the angle of the input
lirk. This is shown as 0, in Figure 4-4 (p. 182). We want to find 03 and 04. The link
lengths are known. Note that we will consistently number the ground link as 1 and the
driver link as 2 in these examples.

The graphical analysis of this problem is trivial and can be done using only high-
school geometry. If we draw the linkage carefully to scale with rule, compass, and pro-
tractor in & particular position (given 05), then it is only necessary to measure the angles
of links 3 and 4 with the protractor. Note that ell link angles are measured from n positive
X axis. InTigure 4-4, a local xy axis system, parallel to the global XY system, has been
created at point A to measure 03, The accuracy of this graphical solution will be limited
by vur care und drafling ability and by the crudity of the prowrsctor used. Nevertheless, a
very rapid approximate solution can be found for any one position.

Figure 4-5 (p. 182) shows the construction of the graphical position solution. The
four link lengths q, b, ¢, d and the angle 8, of the input link are given. First, the ground
lirk (1) and the input link (2) arc drawn to a convenicnt scelc such that they intcrscet at
the origin O, of the global X¥ coordinatc system with link 2 placcd at the input anglc 0.
Link 1 is drawn along the X axis for convenience. The compass is set to the scaled length
of link 3, und an arc of that radius is swung about the end of link 2 (point A). Then the
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out that Chasles’ theorem
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earlier (Naples, 1763) by
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of Europe, end the theorem
became associated with
Chasles’ name.
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al
FIGURE 4-4
Measurement of angles in the fourbar linkage

compass is sel to the scaled length of link 4, and a second arc is swung aboul the end of
link 1 (point O4). These two arcs will have two intersections at B and B that define the
two solutions to the positicn problem for a fourbar linkage which can be assembled in
two configurations, called circuits, labeled open and crossed in Figure 4-5. Circnits in
linkages will be discussed in a later section.

The angles of links 3 and 4 can be measured with a protractor. One circuit has angles
07 and By, the other 03+ and D4-. A graphical solution is only valid for the particular value
of input angle used. Fur each additional position analysis we must complelely redraw
the linkage. This can become burdensome if we need a complete analysis at every 1- or
2-degree increment of 8. In that case we will be better off to derive an analytical solution
for 83 and 8, that can be solved by computer.

/ — Open
93'

.

“ e
\ \\ !
A GCS
— Crossed

FIGURE 4-5

Sraphical posttian solution to the open and crossed configurations of the fourbar linkage
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4.5

ALGEBRAIC POSITION ANALYSIS OF LINKAGES

The same procedure that was used in Figure 4-5 to solve geometrically for the intersec-
tions B and B' and angles of links 3 and 4 can be encoded into an dlgebraic algorithm.
The coordinates of point A are found from

A, —acosh,
@.2a)
Ay =asin91

The coordinates of point B are found using the equations of circles about A and Oj.

b2 =(B,-A Y +(B,~4,) (4:2b)

c? =(B,-d)* +B? (4.2c)

which provide a pair of simultaneous equations in B, and B,.

Subtracting equation 4.2¢ from 4.2b gives an expression for B,.

@b 4ci-d® 24,8, . 248,
2(A,—d)  2(A-d) = 2(A.-d)

B, (4.2d)

Substituting equation 4.2d into 4.2¢ gives a quadratic equation in By which has two
solutions corresponding to those in Figure 4-5.

T 2
B,+[s = d| -¢=0 42e)

This can be solved with the familiar expression for the roots of a quadratic equation,

where:

2
5. QL0 —4PR @29

y 2P
2
S Q=“y(d-5)
(A;-d)’ Ay —d
2 2 2 2
=(d—S) — L3 bt —d”
R=(d-8)*-c* 8 24, -d)

Note that the solutions to this equation set can be real or imaginary. If the latter, it
indicates that the links cannot connect at the given input angle or at all. Once the two
values of By are found (if real), they can be substituted into equation 4.2d to find their
corresponding x components. The link angles for this position can then be found from

(B,-A
93=m'-[ ¥ )’]
B.-A,

9, =tan"! B_)'
4 B,—d

@29
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A two-argument arctangent function must be used to solve equations 4.2g since the angles
can be in any quadrant. Equations 4.2 can be encoded in any computer language or
equation solver, and the value of 8, varied over the linkage’s usable range to find all cor-
responding values of the other two link angles.

Vector Loop Representation of Linkages

An alternate approach to linkage position analysis creates a vector loop (or loops) around
the linkage as first proposed by Raven.[! This approach offers some advantages in the
synthesis of linkages which will he addressed in Chapter 5. The links are represented as
position vectors. Figure 4-6 shows the same fourbar linkage as in Figure 4-4 (p. 182),
but the links are now drawn as position vectors that form a vector loop. This loop closes
on itself, making the sum of the vectors around the loop zero. The lengths of the vectors
are the link lengths, which are known. The current linkage position is defined by the input
angle 0 as it is a one-DOF mechanism. We want to solve for the unknown angles 03 and
84. To do so we need a convenient notation to represent the vectors.

Complex Numbers as Vectors

There are many ways to represent vectors. They may be defined in polar coordinates,
by their magnitude and angle, or in cartesian coordinates as x and y components. These
forms are of course easily convertible from one to the other using equations 4.0a. The
position vectors in Figure 4-6 can be represented as any of these expressions:

Polar form Cartesian form
R@£0 rcosBi+rsin0j (4.32)
ref® rcosB+ jrsin® (4.3b)

Equation 4.3a uses unit vectors to represent the x and y vector component direc-
tions in the cartesian form. Figure 4-7 shows the unit vector notation for a position vec-
tor. Equation 4.3b uses complex number notation wherein the X direction component
is called the real portion and the Y direction component is called the imaginary portion.
This unfortunate term imaginary comes about because of the use of the notation j to
represent the square reot of minus onc, which of coursc cannot be cvaluatcd numcrically.

Y i ‘B

FIGURE 4-6

Position vector loop for a fourbar linkage
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However, this imaginary mumber is used in a complex number as an operator, nof as a
value. Figure 4-8a (p. 186) shows the complex plane in which the rea! axis represents
the X-directed component of the vector in the plane, and the imaginary axis represents
the ¥-directed component of the same vector. So, any term in a complex number which
has no j operator is an x component, and 2 j indicates & y component.

Note in Figure 4-8b (p. 186) that each multiplication of the vector R4 by the opera-
tor f results in a counterclockwise rotation of the vector through 90 degrees. The vector
R =R, is directed along the positive imaginary or j axis. The vector Rc= 2R, is di-
rected ulong the negative real uxis because 2=—1and thus Re=-R. In similar fashion,
Rp =j3R,=—jR4 and this component is directed along the negative j axis.

One advantage of using this complex number notation to represent planar vectors
comes from the Euler identity:

/0= cogB jrin® (4.42)

Any two-dimensional vector can be represented by the compact pelar notation on the
left side of equation 4.4a. There is no easier function to differentiate or integrate, since
it is its own derivative:

-}
LT (4.4b)

We will use this complex number notation for vectors to develop and derive the
equations for position, velocity, and acceleration of linkages.

The Vector Loop Equation for a Fourbar Linkage

The directions of the position vectors in Figure 4-6 are chosen 50 as 10 define their angles
where we desire them to be measured. By definition, the angle of a vector is always
measured at its root, not al its head. We woulkd like angle 6, to be measured at the fixed
pivot Oy, so vector R, is arranged to have its root at that point. We would like to measure
angle 05 at the point where links 2 and 3 join, so vector R is rooted there. A similar logic
dictates the arrangement of vectors Ry and R;. Note that the X (real) axis is taken for
convenience along link 1 and the origin of the global coordinate system is taken at point

A
..-_..f‘ R Polar form:
f
| Ry @/
Cartesian form:
. 1 A A.
B —— "% Rcos@1i, Rsind j
{
£}
RcosO i

FIGURE 4-7
Unit vector notation for position vectors
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Polar form: Re je
Cartesian form: Rcos® + jRsin@ Imaginary
. R =Ry s
Imaginary B Rp= R
il
A ) E
o Rc=jR=-R »+0
1 ‘ A
i R4 » - N o —
JRsinQ 0 C 0 Real
| _ v — Ry
{  Real Rp=j"R=-jR —
P P
s DO
Kcos 0 ‘
(a) Complex number representation of a position vec-or (b) Vector rotations in the complex plans
FIGURE 4-8

Complex number representation of vectors in the plane

(3, the root of the input link vector Ry. These choices of vector directions and senses,
as indicated by their arrowheads, lead to this vector loop equation:

R2+R;-R4-R; =0 (4.52)

An alternate notation for these position vectors is to use the labels of the points at
the vector tips and roots (in that order) as subscripts. The second subscript is convention-
ally omitted if it is the origin of the global coordinate system (point O5):

RA +RBA 'R801 -Ro4 =0 (4.5b)

Next, we substitute the complex number notation for each position vector. To sim-
plify the notation and minimize the use of subscripts, we will denote the scalar lengths of
the four links as a, b, ¢, and d. These are so labeled in Figure 4-6 (p. 184). The equation
then becomes:

ae!® +be! o4 _goth =0 4.5¢)

These are three forms of the same vector equation, and as such can be solved for two
unknowns. There are four variables in this equation, namely the four link angles. The
link lengths arc all constant in this particular linkage. Also, the valuc of the angle of link
1 is fixed (at zerc) since this is the ground link. The independent variable is 0 which we
will control with 1 motor or other driver device. That leaves the angles of link 3 and 4 to
be found. We need algebraic expressions which define 83 and 6, as functions only of the
constant link lengths and the one input angle, 8;. These expressions will be of the form:
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93 =f{ﬂ,b, c,d, az}

8, =g{a,b,c,d.0;}

(4.5d)

To solve the polar form, vector equation 4.5¢, we must substitute the Euler equivalents
(equation 4.4a, p. 185) for the &® terms, and then separate the resulting cartesian form
vector equation into two scalar equations which can be solved simultaneously for 84 and
0,. Substituting equation 4.4a into equation 4.5c:

a(cos0, + jsinB; )+ b(cosB;+ jsin®;)—c(cosB, + jsin®, ) —d(cosB, +sinB; )=0 (4.5¢)
This equation can now be separated into its real and imaginary parts and each set to zero.
real part (x component):

acos®, +bcos®; —ccosh, —dcosh; =0
bot: 8, =0, so: (4.62)
acosB; +beosBy —ccosy —-d=0

imaginary part (y component):
Jjasin®, + jbyin®, - josin®, — jdsind; =0
but: B8, =0, and the j's divide out, so: (4.6b)

usinB; +bsin8; —csinby =0

The scalar equations 4.6a and 4.6b can now be solved simultaneously for 84 and
8,. 'lo solve this set of two simultaneous trigonometric equations is straightforward but
tedious. Some substitution of trigonometric identities will simplify the expressions. The
first step is to rewrite equations 4.6a and 4.6b sc as to isolate one of the two unknowns
on the left side. We will isolate 83 and solve for By in this example.

boosty =—gcosB, +ccosly +d (4.6c)
bslﬂ.e; =—ﬂsiﬂeg +L'Sine4 (46d)

Now square both sides of equations 4.6c and 4.6d and add them:
b (sin2 8, +cos? 83) =(-asin®, +csinB, )2 +({-acos8, +ccosh, +d)2 @.7a)

Notc that the quantity in parenthescs on the left side is cqual to 1, climinating 85 from
the equation, leaving only 04 which can now be solved for.

b? =(-asin®, +csin@, )2 +(~acos8, +ccos, +d)2 4.7b)
Expand this expression and collect terms.
b* =a*+c*+d* - 2ad costy + 2cd cos8,, — 2ac(sin®; sin®, +cost, cost, ) @.7¢)

Divide through by 2gc and rearrange to get:

187



Kinematics of Machinery

188

DESIGN OF MACHINERY CHAPTER 4

d d a*—p*+c*+d?
= 9 ——cos0 .
o G ey

To further simplify this expression, the constants K, K, and K are defined in terms
of the constant link lengths in equation 4.7d:

=sin925in04 +00592 50594 (4.7d)

L. gy, #
P B PO i i (4382)
a c 2ac
and:
K1 COS94-K2 00592 +K1=00592 00594 +Sinez Sin94 (4.8b)

If we substitute the identity cos(8; —84)=c058,cos8,+3in8; sinB, , we get the form
known as Freudenstein’s equation.

K 00894 —K;co88; +Kq =COS(02 —94) {4.8¢c)

In corder to reduce equation 4.8b to a more tractable form for solution, it will be use-
ful to substitute the half-angle identities which will convert the sin 84 and cos 8, terms
to tan 0, terms:

2tan| %
sinBy = (4.9)
1+tan

2
2(8; |
2

This results in the following simplified form, where the link lengths and known input
value (8,) terms have been collected as constants A, #, and C.

A2 | pan| % | c0
2 2
where: A=cosB, - K, -K, cosB, + K,

B=-2sin,
C=K1 —(K2 +1)cosez +K3

4.10a)

Note that equation 4.10a is quadratic in form, and the solution is:
m[9_4 vB:-44AC

24

_—BivB -4AC
3

(4.10b)

2
6, =2 [-BtJB —4AC]
2 24

Equation 4.10b has two solutions, obtained from the £ conditions on the radical
These two solutions, as with any quadratic equation, may be of three types: real and equal,
real and unequal, complex conjugate. If the discriminant under the radical is negative,
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then the solution is complex conjugate, which simply means that the link lengths chosen
are not capable of connection for the chusen value of the input angle 8. This can vceur
either when the link lengths are completely incapable of connection in any position or, in
a non-Grashof linkage, when the input angle is beyond a toggle limit position. There is
then no real solution for that value of input angle 8y. Excepting this situation, the solu-
tion will usually be real and unequal, meaning there are two values of 8, corresponding
to any one value of 8. These are referred to as the crossed and open configurations of
the linkage and also as the two circuits of the linkage.” In the fourbar linkage, the minus
solution gives 6, for the open configuration and the positive solution gives 0, for the
crossed configuration.

Figure 4-5 (p. 182) shows both crossed and open solutions for a Grashof crank-rocker
lirkage. The terms crossed and open are based on the assumption that the input link 2, for
which 6; is defined, is placed in the first quadrant (ie., 0 < 63 < 7/2). A Grashof linkage
is then defined as crossed if the two links adjacent to the shortest link cross one another,
and as open if they do not cross one another in this position. Note that the configuration
of the linkage, either crossed or open, is solely dependent upon the way that the links are
assembled. You cannot predict, based on link lengths alone, which of the solutions will
he the desired one. Tn other words, you can obtain either solution with the same linkage
by simply taking apart the pin which connects links 3 and 4 in Figure 4-5 (p. 182), and
moving those links to the only other positions at which the pin will again connect them.
In so doing, you will have switched from one position solution, or circuit, to the other.

The solution for angle 65 is essentially similar to that for 84. Returning to equations
4.6, we can rearrange them to isolate 84 on the left side.

coosB, =acosB; +bcosbl; —d (4.6e)
csin®, = asin®, + bsin®, 4.60
Squaring and adding these equations will eliminate 84. The resulting equation can be
solved for 83 as was done ahove for B4, vielding this expression:
K cos03+ K, cosBy+ Ks =cosB; cosBs +5in B, sinB; 4.11a)

The constant X is the same as defined in equation 4.8b, and K4 and K5 are:

d & -d?-a* - b
K, == Fys=——n =9 = 4.11b,
b & 2ab s

This also reduces to a quadratic form:
Dtan? (973)+Etan(%)+p=o
4.12)
where D=cosB) ~K;+K4co88; + K
E=-2sin0,
F=K; +(K,—1)cosd, + Ks

and the solution is:

189

* Sec Section 4-13 (p.
208) for a more complete
discussion of circuits and

branches in linkages.
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—-E+\E?-4ADF
3} =2Z2arctan| —M 413

As with the angle 8, this also has two solutions, corresponding to the crossed and
open circuits of the linkage, as shown in Figure 4-5 (p. 182).

A TDEXAMPLE 4-1
Position AI'IC“YS|$ of a Fourbar Llnkcge with the Vector LOOp Method,

Problem: Given a fourbar linkage with the link lengths Ly =d = 100 mm, L, = a = 40 mm,
Ly=b=120mm,L, = ¢ = 80 mm. For 8, = 40° find all possible values of B3 and 84.

Solution: See Figure 4-6 (p. 184) for nomenciature.

1 Using equation 4.8, calculate the link ratios K, K and X,

K,=2="=125 (a)

@ -p*+c*+d* _ 40% -120° +80° +100%

2ac - 2(40)(80) M

2 Usethese link ratios to find the intermediate parameters A, B, and C from equation 4.10a.

A =cos8; — K1 — K, c0s0; + K3 = cos{40°)— 2.5 - 1 25 cos(40°) +0.562 = -2.129
B =-25in@, =—2sin(40°) = -1.286 (b)
C =Ky -(K; +1)cos0 + K3 =2.5—(1.25+1) cos(40°) + 0.562 =1.339

3 Useequation 4.10b to find 84 for both the open and crossed configurations.

™ —B—+B:—44C - 1.286—\/-1.2862 -4(-2.129)(1.339)
4apen = 8001 24 N 2(-2.129)
=57.33°
(©
. i 1.286+ /-1.286 —4(-2.129)(1.33
N B+VB —44C|_, J (-2.129)(1.339)
cros 24 2(-2.129)
=-98.01°

4 Useequnation4.11b to find the ratios X4 and K.
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S
circuit 1
(open)
0,,=57.33°
i :
—— X
/
0,,=-98.01°
circuit 2
{crossed)
FIGURE 4-9
Soution to Example 4-1
d 100
K, =120 =0.833
Wowi2 2 a2 2 _ 1002 _ an? _ 1902
K5=c d‘-a b” _ 807 -100°-40"-120 - 2042 @
2ah 2(40)(120)

5 Use equation 4.12 to find the intermediate parameters D, E, and F.

D =uusBy — K + Ky vos B, + K5 = wos(40°) - 2.5+ 0.833(40°) - 2.042 = -3.137
E=-2:sin8, =-2sin(40°)=-1.286

G
F =K, +(K, —1)cosb, + K5 — 2.5 +(0.833- 1)cos(40°) - 2.042 - 0.331
6 Use equation 4.13 to find B4 for both the open and crossed configurations.
i -E-VE*-4DF |_, 1.286— {12862 — 4(-3.137)(0.331)
Sopm = LTI 2D s 2(-3.137)
=20.30° )
2 _1.2862 —4(-
e = —E+JE —4DF i 1286+ /—1.286% — 4(-3.137)(0.331)
s BTV 2D 2(-3.137)
=-60.98°

7 The solution is shown in Figure 4-9.
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FIGURE 4-10
Position vector loop for a fourbar crenk-siider or slider-crank linkage

4.6 THE FOURBAR CRANK-SLIDER POSITION SOLUTION

The same vector loop approach as used for the pure pin-jointed fourbar can be applied to
a linkage containing sliders. Figure 4-10 shows an offset fourbar crank-slider linkage,
inversion #1. 'I'he term offset means that the slider axis extended does not pass through
the crank pivot. This is the general case. (The nonoffset crank-slider linkages shown
in Figure 2-13 (p. 52) are the special cases.) This linkage could be represented by only
three position vectors, Ro, R, and R, but one of them (R,) will be a vector of varying
magnitude and angle. It will be easier to use four vectors, R, Ry, R, and R4 with R ar-
ranged parallel to the axis of sliding and R4 perpendicular. In effect the pair of vectors R
and R4 are orthogonal components of the position vector R from the origin to the slider.

It simplifies the analysis to arrange one coordinate axis parallel to the axis of sliding.
The variable-length, constant-direction vector R; then represents the slider position with
magnitude 4. The vector R4 is orthogenal to R and defines the constant magnitude offset
of the linkage. Note that for the special-case, nonoffset version, the vector R4 will be zero
and R; = R,. The vectors R, and R complete the vector loop. The coupler’s position
vector Rz is placed with its root at the slider which then defines its angle 05 at point B.
This particular arrangement of position vectors leads to a vector loop equation similar to
the pin-jointed fourbar example:

Rz-Rs—R4—Rl =0 (4.14&]

Compare equation 4.14a to equation 4.5a (p. 186) and note that the only difference
is the sign of Rs. This is due solely to the somewhat arbitrary choice of the sense of
the position vector Rj in each case. The angle 8; must always be measured at the root
of vector Ra, and in this example it will be convenient to have that angle 03 at the joint
laheled B. Once these arbitrary choices are made it is crucial that the resulting algebraic
signs be carefully observed in the equations, or the results will be completely erroneous.
Letting the vector magnitudes (link lengths) be represented by a, b, ¢, d as shown, we can
substitute the complex number equivalents for the position vectors.

ac® _pe/® ool _goff =0 (4.14b)
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Substitute the Enler equivalents:
a{cos8, + jein®, ) - b(cosO; + jsin B;)
—c(cosBy + jsin®, )- d(cosB + jsin®;) =0 4.14¢c)

Separate the real and imaginary components:
rcal part (x component):

acos0; —bcosBy - ccosdy —deosd; =0
but: 8, =0, so: acos®, —bcosb; —ccosfy —d =0 {(4.15a)

imaginary part (y componcnt):
JjasinB; — jbsinB; - jesin®, — jdsind; =0
but: 8, =0, andthe j's divide out, so: {4.15b)

asin®, —bsinb, —csind, =0

We want to solve equations 4.15 simultaneously for the two unknowns, link length d
and link angle 84. The independent variable is crank angle 8. Link lengths @ and b, the
offset ¢, and angle 8, are known. But note that since we set up the coordinate system to
be paralicl and perpendicular to the axis of the slider block, the angle 8; is zcro and 8, is
90°. Equation 4.15b can be solved for 63 and the result substituted into equation 4.15a
to solve for 4. The solution is:

8, =amm(%°2"] {4.162)
d=acost; —bcosbs {4.16b)

Note that there are again two valid solutions corresponding to the two circuits of the
linkage. The arcsine function is multivalued. Its evaluation will give a value between
190° representing only one circuit of the linkage. The value of d is dependent on the
calculated value of 8. The value of B; for the second circnit of the linkage can be found
from:

@17

6, _m[$]+

A DEXAMPLE 4-2

Posthon Analysis of a Fourbar Crank-Sider Linkage with the Viector Loop Method.

Problem: Given a fourbar crank-slider linkage with the link lengths Ly = ¢ =40 mm, L5 =
b = 120 mm, offret = ¢ = —20 mm. For 8, = 60° find all possible values of 8 and
slider position 4.

Solution: (See Figure 4-10 for nomenclature.)

1 Using equation 4.16a, calculate the link conpler angle 85 for the open configuration.
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circnit 2
(crossed)

circuit 1
(open)

0;,,.,= 15291°

e X

s

8y, = 27.09° offset ¢ = -20 mm
, e T .
- shder pxis—*
D o« d_ g = -86.84 mm -.‘4— dypen= 12684 mm
FIGURE 4-11
Sciution to Example 4-2

=miﬂ(

83, %'_‘] P (w

-— o
5 30 )—- 15291 (@)

2 Using equation 4.16b and the result from step 1, calculate slider position d for open linkage.
d = acos6, — bcosBy = 40cos(60°)—120cos(152.91°) = 126.84 mm (b)

3 Using equation 4.17, calculate the link coupler angle 8 for the crossed configuraticn.

. [ asin,-c . [ 40sin(60*)—(-20 n
83, enat =mn(—T2)+x=m( (12()) ( )]+u=27.09 ©

4 Using equation 4.16b and the result from step 3, calculate slider position d for crossed linkage.

d = acosB, — bcos B; =40cos(60°)—120c0s(27.09°)= ~86.84 mm @)

5 Note that 84 is measured at the slider end of the coupler as shown in Figure 4-11.

4.7 THE FOURBAR SLIDER-CRANK POSITION SOLUTION

The fourbar slider-crank linkage has the same geometry as the fourbar crank-slider
linkage that was analyzed in the previous section. The name change indicates that it will
be driven with the slider as input and the crank as output. This is sometimes referred to
as a “back-driven” crank-slider. We will use the term slider-crank to define it as slider-
driven. This is a very commonly used linkage configuration. Every internal-combustion
piston canginc has as many of thesc as it has cylinders. The vector loop is as shown in
Figure 4-10 (p. 192) and the vector loop equation is identical to equation 4.14a. But now
we must solve this equation for 8 as a funciion of slider position 4.

Start with equation 4.14a, make the substitutions of equation 4.14b and the simpli-
fications of equations 4.15 to get the same simultaneous equation sef:
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acosty — beost; —ccosty —d=0 (4.15a)
asin®, — bsinB; — csinfy =0 {4.15b)

8, =90° . sin@, =1, cosB, =0
50
acosBy —bcosB, —d=0 (4.182)
asinfl; —hsinBy—c=10 {4.18h)

As was done in the fourbar linkage solution, isolate the 83 terms on one side, square
both equations, and add them to eliminate 8.

becosB; =acosBy —d
bsinB; = asin®, —¢

square: b’ cos? 0;= (a00502 —d)2
b7 sin? 0,— (asinez -c)2

add: b (sin” 8+ +cos’ 8:)=(acos8, —d)’ +{asiné, - )’

b? ={acosh, - d)2 +(asin®, -(:)2

b? = a? cos? 8, — 2ad cosB, +d? +a?sin? 8, - 2acsin®, +c?

b? =4 (sin® 8, +cos” 8, )~ 2ad cos8; - 2acsin®, +c* +d”

a? —b? +c* +d* - 2acsinB, - 2adcosd, =0 (4.19)
To simplify, create some constant parameters:
let K =d? -0 +c? +d?, Ky=-2ac, Ky=—2ad
then K +K,sin8, +K;cos8, =0 (4.20)

As we did for the fourbar linkage, substitute the tangent half-angle identities (equa-
tion 4.9) for sin 8, and cos B to get the equation in terms of one trigonometric function.

21n®2 -t
K +K, +K; 92 =0
1+ tan? -2 1+tan® =2
2 2
. 26 )
simplify (X, - K3)tan T+2K2tan7+(K,+K3)=0
let A=K1"K3, B=2K2, C=K1+K3
then Am2%+8m%+c=0
2 .
- e @2

Once 0, is known for a given value of d, 8; can be found from either equation 4.18a ar
4.18b.
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* The crank-slider and
slider-crank linkage

both have two circuits or
configurations in which
they can be indzpendently
assembled, sometimes
called open and crossed.
Because effective link 4 is
always perpendicular o the
slider axis, it is parallel 1o
isell vn both circuits, This
results in the two circuits
being mirror images of one
another, mirmored about a
line thraugh the crank pivot.
and perpendicular to the
slide axis. Thus, the choice
of value of slider position
d in the calculation of the
slider-crank linkage deter-
mines which circuit is being
analyzed. But, because of
the change points &t TDC
und BDC, the slider-crunk
has two branches on

ench circuit, and the two
solutions obtained from
equation 4.21 represent the
two branches oa the one
circuit being analyzed In
contrast, the crank-slider
has enly one branch per
circuit because when the
crank is driven, it can make
& full revolution and there
are no change points to
separate branches. Sez
Section 4.13 (p. 208) for a
more complete discussion
of circuits and branches in

linkages.
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Note that there are two solutions to equation 4.21 representing the two branches
of the linkage on the circuil o which the given value of slider position d applies.” The
equation will fail when the backdriven slider-crank is at either top dead center (TDC) or
bottom dead center (BDC). These are indeterminate change pomts between the branches
at which the mathematics cannot predict which branch the linkage will go to next. Areal
slider-crank linkage can only make a full revolution of the crank if there is some stored
energy in the crank to carry it through the dead centers twice per revolution. This is why
you must spin a piston engine to start it and why they typically have a flywheel attached to
the crankshaft to provide the angular momentum needed to pass through TDC and BDC.

ADEXAMPLE 4-3

Position Analysis of a Fourbar Sider-Crank Linkage with the Vector Loop Method
Problem: Given a fourbar slider-crank linkage with the link lengths Ly =a=40 mm, Ly =b=
120 mm, offser = ¢ =—20 mm. For d = 100 mm, find all possible values of 8, and 83
on the circuit defined by the given value of 4.
Solution: See Figure 4-9 (p. 191) for nomenclature.
1 Find the TDC and BDC positions of the linkage.

dgpc = b—a=120-40=8§0 mm

(a)
dipc = b+a=120+40=160 mm

The requested position of d = 100 mm is within the range of motion of the slider-crank linkage
and is neither TDC nor BDC, so equations 4.20 and 4.21 can be used.
2 Find the intermediate parameters needed from equations 4.20 and 4.21.
K =a* - % +¢* +d%= 407 -1207 +(-20)" +100% = 2400

K ==2ac =-2(40)(-20)=1600
Ky =—2ad = -2(40)(100)=-8000

2

24 2(5600)

h
A=K, - K4 =-2400-(-8000) = 5600 -
B—2K, - 2(1600)— 3200
C =Ky + K3 ==2400 +(-8000) =—10400
3 Find the two values of 87 from equation 4.21.
g —B+«/Bz—4AC e -32()n+\l32m2-4(56m)(—m400)
8 =2tan~ | —————— [=2tan =95.798°
24 2(5600)
©
-B-\B?- -3200- /32002 - 4(5600)(—10400
8, ___gm-l{u]=2m-l ‘/ (N ) =-118418°
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A
branch 1
74 b e *"\N

8, = 95.80° . by =187.27°
03 i1 ) X e 1\6

S ] } f - 8y =15001°

/ = offset ¢ .‘ \

af [B=-118422 "y B] _.,__\\-
branch 2 B 1 - slider axis

FIGURE 4-12
Solution fo Exampie 4-3

4  Find the two values of 83 from either equation 4.16a or 4.17. Calculate 84 with both equa-
tions for one value of 8, and then use equation 4.16b with that result to determine which of
the two equations gives the correct value of 4 to match the circuit of this linkage. Then use

that equation with each of the 0, values to get the correct values of B for each branch of this
circuit. This example neads equation 4.17 for its circuit.

8, =sin'l(—‘mmez—l_c]+n=sin'1[- mm(95'798°)‘(_2°))+n=150.113°

b 120
@
T i i oo
8, =ms'1[‘mmb#J+t=ms'l[4osm( ”81';;8) ( 20)J+u=187.267°

5 The solution is shown in Figure 4-12.

4.8 AN INVERTED CRANK-SLIDER POSITION SOLUTION

Figure 4-13a* (p. 198) shows inversion #3 of the common fourhar crank-slider linkage
in which the sliding joint is between links 3 and 4 at point B. This is shown as an offset
crank-slider mechanism. The slider block has pure rotation with its center offset from
the slide axis. (Figure 2-13c, p. 52, shows the nonoffset version of this linkage in which
the vector Ry is zcro.)

The global coordinate system is again taken with its origin at input crank pivot O and
the positive X axis along link 1, the ground link. A local axis system has been placed at
point B in order to define B4. Note that there is a fixed angle ¥ within link 4 which defines
the slot angle with respect to that link.

In Figure 4-13b (p. 198), the links have been represented as position vectors having “":;ggl‘:;’:’v;m"
senses consistent with the coordinate systems that were chosen for convenience indefin- (o0 -0 oo %
ing the link angles. This particular arrangement of position vectors leads to the same 15 filename is the same as

vector loop equation as the previous crank-slider example. the figure number.
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FIGURE 4-13
Inverslon #3 of the slider-cran« fourbar linkage

()

Equations 4.14 and 4.15 (pp. 192-193) apply to this inversion as well. Note that
the absolute position of point B is defined by vector Rz which varies in both magnitude
and direction as the linkage moves. We choose to represent Ry as the vector difference
R, - R; in order to usc the actual links as the position vectors in the loop cquation.

All slider linkages will have at least one link whose effective length between joints
will vary as the linkage moves. In this example the length of link 3 between points A and
B, designated as b, will change as it passes through the slider block on link 4. Thus the
value of b will be one of the variables to be solved for in this inversion. Another variable
will be 04, the angle of link 4. Note however, that we also have an unknown in 63, the
angle of link 3. This is a total of three unknowns. Equations 4.15 can only be solved for
two unknowns. Thus we require another equation to solve the system. There is a fixed
relationship between angles 03 and By, shown as ¥ in Figure 4-10 (p. 192), which gives
the equation:

93 = 94 + 7 (4.22)

Repeating equations 4.15 and renumbering them for the reader’s convenience:

ucosB; —boosfy —covsby—d=0 (4.23a)
asin®, — bsinBz —csin@, =0 4.23b)

These have only twounknowns and can be solved simultaneously for 8, and b. Equa-
tion 4.23b can be solved for link length b and substituted into equation 4.23a.

_ asin@, —csin@y

b
sin@,

(4.24a)

asinﬂz —L'Siue4

— cos; —ccosf, —d=0 (4.24b)

acosB; —
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Substitute equation 4.22 and after some algebraic manipulation, equation 4.24 can
be reduced to:
Pginfy + Qcosby + R—0
where (4.25)
P=asin®, siny+(acos8, —d)cosy
Q =-asinb; cosy +(aoo592 = d)sin'y
R=-csiny

Note that the factors F, Q, R are constant for any input value of 85. To solve this for
84, itis convenient to substitute the tangent half angle identities (equation 4.9, p. 188) for
the sin 84 and cos B4 terms. This will result in a quadratic equation in tan (84 / 2) which
can be solved for the two values of 0.

lmn{%J 1 tanz(%‘]
r +0 +R=0 {4.26a)
1+mn2(94] l+ta.n2(e4)
This reduces to:
(R-Q)tan’ [%‘-)+2Pm(—4—]+(g+k)=o
let
§-R-0, T-2P, U-0+R
then
Stan® [—4)+Tum(%q+U =0 {4.26b)
F
and the solution is:
—T+yT?-4SU
84y, =2mtan[T] {4.26¢)

As was the case with the previous examples, this also has a crossed and an open
solution represented by the plus and minus signs on the radical. Note that we must also
calculate the valucs of link length b for cach 84 by using cquation 4.24a. The coupler
angle 83 is found from equation 4.22 (p. 197).

4.9 LINKAGES OF MORE THAN FOUR BARS

With some exceptions,” the same approach as shown here for the fourbar linkage can be
used for any number of links in a closed-loop configuration. More complicated linkages
may have multiple loops which will lead to more equations to be solved simultaneously
and may require an iterative solution. Altematively, Wampler [10] presents a new, general,
noniterative method for the analysis of planar mechanisms containing any number of rigid
links connected by rotational and/or translational joints.

199

" Waldron and Sreeniva-
senl!l report that the
common solution methods
for position analysis are not
general, i.c., are not extend-
ablc 10 n-link mechanisms.
Conventional position
analysis methods, such as
those used here, rely on the
presence of a fourbar loop
in the mechanism that can
be solved first, followed

by a decomposition of

the remaining links into

a series of dyads. Notall
mechanisms contain fourbar
loops. (One eightbar,
1-DOF linkage contains

no fourbar loops—sce the
16th isomer at lower right
in Figure 2-11d on p. 50).
Even if there is a fourbar
loop. its pivots may not be
grounded, requiring that the
linkage be inverted to start
the solution. Also, if the
driving joint is not in the
fourbar loop, then interpola-
tion is needed to solve for
link positions.
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The Geared Fivebar Linkage

Another cxample, which can be reduced to two cquations in two unknowns, is the geared
fivebar linkage, which was introduced in Section 2.14 (p. 62) and is shown in Figure
4-144 and program LINKAGES disk filke FO4-11.5br. The vevtor loop for this Linkage is
shown in Figure 4-14b. It vbviously has one more position vevtor thun the fourbar. Its
vector loop equation is:

R,+R,—R,—R,-R,=0 (4.279)

Note that the vector senses are again chosen to suit the analyst’s desires to have the
veetor angles defined at a convenient end of the respective link. Equation 4.27b substi-
tates the complex polar notation for the position vectors in equation 4-23a, using a, b, c,
d, {10 represent the scalar lengths of the links as shown in Figure 4-14.

ae’® el e/ — gl - fb =9 (4.27b)

Note also that this vector loop equation has three unknown variables in it, namely the
angles of links 3, 4, and 5. (The angle of link 2 is the input, or independent, variable, and
link 1 is fixed with constant angle.) Since a twe-dimensional vector equation can only be
solved for two unknowns, we will need ancther equaticn to solve this system. Because
this is a geared fivebar linkage, there exists a relationship between the two geared links,
here links 2 and 5. Two factors determine how link 5 behaves with respect to link 2,
namely, the gear ratio A and the phase angle ¢. The relationship is:

95 = M)z +¢ (427¢c)

This allows us Lo express 85 in terms of 6 in equation 4.27b and reduce the un-
knowns to two by substimting equation 4.27¢ into equation 4.27b.

062 4 bel® — el — g P0244) _ refi =0 (4.28a)

Note that the gear ratio A is the ratio of the diameters of the gears connecting the two
links (A = dia, / dias ), and the phase angle ¢ is the initial angle of link 5 with respect
to link 2. When link 2 is at zero degrees, link 5 is at the phase angle ¢. Equation 4.27¢
defines the relationship between 8, and 8s. Both A and ¢ are design parameters selected
by the design engineer along with the link lengths. With these parameters defined, the
only unknowns left in equation 4.28 are 03 and 9.

The behavior of the geared fivebar linkage can be modified by changing the link
lengths, the gear ratio, or the phase angle. The phase angle can be changed simply by
lifting the gears out of engagement, rotating one gear with respect to the other, and re-
engaging them. Since links 2 and 5 are rigidly attached to gears 2 and 5, respectively,
their relative angular rotations will be changed also. It is this fact that results in different
positions of links 3 and 4 with any change in phase angle. The coupler curve’s shapes
will also change with variation in any of these parameters as can be seen in Figure 3-23
{p. 131) and in Appendix E.

The procedure for solution of this vector loop equation is the same as that used for
the fourbar linkage:
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Gear 2 (@)

FIGURE 4-14
The geared fivebar linkage and fts vactor loop

1 Substimte the Fuler equivalent (equation 4.4a, p. 185) into each term in the vectar

loop equation 4.28a.
a(oosB: + jsin92)+b(coseg + jsinag)-c(cose4 + jsin94)
—d[cos(A; +9)+ jsin(A8, +9)]- f(cos8; + jsin6; ) =0 {4.28b)
2 Separate the real and imaginary parts of the cartesian form of the vector loop equa-
tion.
acosB, +bcos8y —ccosd, —dcos(A0; +9)— foos8; =0 (4.28¢)
asin®, + bsin 0 - ¢sin@, —dsin(A0, +0)- fsind, = 0 {4.28d)
3 Rearrange to isolate one unknown (either B3 or 8,) in each scalar equation. Note that
8, is zero.
bcosB3 = -acosf;, +ccosBy +dcos(A0; +b)+ f {4.28¢)
bsin®, = —asin®, +csind, +dsin(A; + ) (4.280)

4 Square both equations and add them to eliminate one unknown, say 0.
bt = k[dms(lﬂz +0)-acos, + f]cosB,,
+2c[dsin{A8; +¢) - asind, ]sin6,
+a?+c? +d? +f2—20fcu392
- 2d(acos8; — f)cos(A0, +¢)
— 2adsin®, sin(A9, +¢) 4289
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5 Substitute the tangent half-angle identities (equation 4.9, p. 188) for the sine and
cosine terms and manipulate the resulting equation in the same way as was done for
the fourbar linkage in order to solve for 04.

A =Zc[doos(m2 +¢)—acos8, +f]
B=2c[dsin(}8; +¢)-asin®, |
C=a*-b*+c* +d*+ f* -2af cosD,
- 2d(acos®, — f)cos(A, +¢)— 2adsin®, sin (A8, +4)
D=C-4, E=2B, F=A+C

2
—EXVE —4DF] (4.28h)

941,: = Zan:m[ =

6 Repeat steps 3 to 5 for the other unknown angle 0.
G =2b[ acos8; — dcos(A8; +9)— £ |
H =2b[ asin®, - dsin(38, +0) ]
K=a*+b2-¢ +dz+f2 - 2af cos@,
- 2d(acos8, - f)cos(A8, + )
- 2adsin0, sin(A0; +4¢)
L=K-G;, M=2H, N=G+K

~-MiM*-4LN .
8y, =2m[T] (4.281)

Note that these derivation steps are essentially identical to those for the pin-jointed
fourbar linkage once 8, is substituted for B5 using equation 4.27¢ (p. 200).

>~ X

FIGURE 4-15
Watt’s sixbar linkage and vector loop
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(a) A
FIGURE 4-14
Stephenson’s sixoa’ [Inkage and vector loops

Sixbar Linkages

WATT’S SIXBAR  is essentially two fourbar linkages in series, as shown in Figure 4-15a,
and can be analyzed as such. Two vector loops are drawn as shown in Figure 4-15b.
These vector loop equations can be sclved in succession with the results of the first loop
applied as input to the second loop. Note that there is a constant angular relationship
between vectors R, and R< within link 4, The solution for the fourbar linkage (equations
4.10 and 4.13, pp. 188 and 189, respectively) is simply applied twice in this case. De-
pending on the inversion of the Watts linkage being analyzed, there may he two four-link
loops or one four-link and one five-link loop. (See Figure 2-14, p. 54.) In either case, if
the four-link loop is analyzed first, there will not be more than two unknown link angles
to be found at one time.

STEPHENSON'S SIXBAR  is a more complicated mechanism to analyze. Two vector
loops can be drawn, but depending on the inversion being analyzed, either one or both
loops will have five links* and three unknown angles as shown in Figure 4-13a and b (p.
198). However, the two lonps will have at least one nongroand link in common and so a
solution can be found. In the other cases an iterative solution such as a Newton-Raphson
method (see Section 4.14, p. 210) must be used to find the roots of the equations. Program
LINKAGES is limited to the inversions which allow a closed-form solution, one of which
is shown in Figurc 4-16, and it docs not do the itcrative solution.

4.10 POSITION OF ANY POINT ON A LINKAGE

Once the angles of all the links are found, it is simple and straightforward to define and
calculate the position of any point on any link for any input position of the linkage. Fignre
4-17 shows a fourbar linkage whose coupler, link 3, is enlarged to contain a coupler point
P. The crank and rocker have alsc been enlarged to show points S and U which might
represent the centers of gravity of those links. We want to develop algebraic expressions
for the positions of these (or anty) points on the links.

* See footnote on p. 199.
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FIGURE 4-17
Postttons of pcints on the inks

To find the position of point $, draw a position vector from the fixed pivot () to point
S. This vector R3p, makes an angle 8, with the vector R40,. This angle 8, is completely
defined by the geometry of link 2 and is constant. The position vector for point § is then:

Rgg, =Ry =5/ 7%) = s[cos(0; +8,)+ jsin(0, +5,) ] (4.29)

The position of point U on link 4 is found in the same way, using the angle 84 which
is a constant angular offset within the link. The expression is:

Ryo, = ue/(% %) = u[cos(0 +8,)+ jsin(8, +34)] (4.30)

The position of point P on link 3 can be found from the addition of two position
vectors R4 and Rpy. Vector R, is already defined from our analysis of the link angles in
equation 4.5 (p. 186). Vector Rp, is the relative position of point P with respect to point
A, Vector Rp, is defined in the same way as R or Ry, using the intemal link offset angle
33 and the position angle of link 3, 03.

Rp, = pe/(B3+83) p[cos(03+8;)+ jsin(03+33)] (*.31a)
Rp=R,+Rp, (4.31b)

Compare equation 4.31b with equations 4.1 (p. 178). Equation 4.31b is the position dif-
ference equation.

4.11 TRANSMISSION ANGLES

The transmission angle was defined in Section 3.3 (p. 100) for a fourbar linkage. That
definition is repeated here for your convenience.

The transmission angle . is shown in Figure 3-3a (p. 102) and is defined as the angle between
the output link and the coupier. It is usually taken as the absolute value of the acute angle of the
pair of angles at the intersection of the two links and varies continuously from some minimum to
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some maximum value as the linkage goes through its range of motion. It is a measure of the quality
of force transmission at the joint.*

We will expand that definition here to represent the angle between any two links in a
lirkage, as a linkage can have many transmission angles. The angle between any output
link and the coupler which drives it is a transmission angle. Now that we have developed
the analytic expressions for the angles of all the links in a mechanism, it is easy to define
the transmission angle algebraically. It is merely the difference between the angles of the
two joined links through which we wish to pass sone force or velocity. For our fourbar
linkage example it will be the difference between 03 and 8. By convention we take the
absolute value of the difference and force it to be an acute angle.

Orans =[03 ~ 84|
i 8, >% then p=m-0,,, else p=0,,. (432)

This computation can be done for any joint in a linkage by using the appropriate link
angles.

Extreme Values of the Transmission Angle

For a Grashof crank-rocker fourbar linkage the minimum value of the transmission angle
will occur when the crank is colinear with the ground link as shown in Figure 4-18. The
values of the transmission angle in these positions are easily calculated from the law
of cosines since the linkage is then in a triangular configuration. The sides of the two
triangles are link 3, link 4, and either the sum or difference of links 1 and 2. Depending
on the linkage geometry, the minimum value of the transmission angle )i, will occur
cithcr when links 1 and 2 arc colirear and overlapping as shown in Figurc 4-18a or when
lirks 1 and 2 are cofinear and nonoverlapping as shown in Tigure 4-18b. Using notation
consistent with Sectivn 4.5 (p. 183) and Figure 4-7 (p. 194) we will label the links:

{a) Overlapped

FISGURE 4-18

*+ The transmission angle
his limited applivation. I
only predicts the quality of
farce or torque ransmis-
sion if the input and

output links are pivaterd to
ground. K the output force
is taken from a floating
link (coupler), ther the
transmission angle is of no
value. A different index of
merit called the joint force
index (JFT) is presented in
Chapter 11 which discusses
force analysis in linkages.
{Sec Scction 11,12 p. 611.)
The JF1 is uscful for situ-
ations in which the output
link is floating as well

as giving the same kind

of information when the
output is taken from a link
rotating against the groumnd.
However, the JFI requires a
complete force analysis of
the linkage be done whereas
the transmission angle is
determined from linkage
geomerry alone.

{b) Bxtended

The minimum fransmission angle in the Grashof crank-rocksr fourbar linkage occurs in one of two pasitions
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(a) Toggle positions for links band ¢ (b) Toggle postions for links a and b

FIGURE 4-19
Non-Grashof filple-rocker linkages in toggle

a=link?2, b =1link 3, ¢ = link 4, d=link1
For the overlapping case (Figure 4-15a, p. 202) the cosine law gives

b +c* —(d-a)*
u1=71=M[ u 2 ] @.332)

2bc
and for the extended case, the cosine law gives

(4.33b)

b +c? -(d-lra)2
By =T—Y; = R—aCC08( ————

2be

The minimum transmission angle Ji,,;, in a Grashof crank-rocker linkage is then the
smaller of |1; and py.

For a Grashof double-rocker linkage the transmission angle can vary from 0 1o 90
degrees because the coupler can make a full revolution with respect to the other links. For
a non-Grashof triple-rocker linkage the transmission angle will be zero degrees in the
toggle positions which occcur when the output rocker ¢ and the coupler b are colinear as
shown in Figure 4-19a. In the other toggle positions when input rocker a and coupler b are
colinear (Figure 4-19b), the transmission angle can be calculated from the cosine law as:

when v=0,

44 =arccos

2,.2_42
(a+b) +c°—d :l @34)

Z:(a+b)
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FIGURE 4-20
Finding the crank angle coresoonding to the toggle pesitions

This is not the smallest value that the transmission angle [t can have in a triple-rocker,
as that will obviously be zero. Of course, when analyzing any linkage, the transmission
anglcs can casily be computed and plotted for all positions using cquation 4.32. Program
LINKAGES does this. The student should investigate the variation in transmission angle for
the example linkages in thuse programs. Disk file FO4-15.4br can be upened in program
LINKAGES to observe that linkage in motion.

4.12 TOGGLE POSITIONS

The input link angles which correspond to the toggle positions (stationary configurations)
of the non-Grashof triple-rocker can be calculated by the following method, using
trigonometry. Figure 4-20 shows a non-Grashof fourbar linkage in a general position.
A construction line % has been drawn between points A and Oy4. This divides the quad-
rilateral loop into two triangles, 02A04 and ABO4. Equation 4.35 uses the cosine law
to express the transmission angle U in terms of link lengths and the input link angle 65.

Rk’ =a®+d% -2adcose,

also: h? =b% +c% - 2bcoosp
507 a2+d2-24dcos82 =b2+c? - 2bccosp
24,0820 A2 5
and: CosSp = M+ i‘-‘icos% (4.35)
2be be

To find the maximum and minimum values of input angle 85, we can differentiate
equation 4.35, form the derivative of 0, with respect to |1, and set it equal to zero.

L. T (4.36)
dp  adsin;

The link lengths a, b, ¢, d are never zero, so this expression can only be zero when

sin p is zero. This will be true when angle p. in Figure 4-20 is either zero or 180°. This

is consistent with the definition of toggle given in Section 3.3 (p. 100). If p is zero or
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180° then cos u will be +1, Substituting these two values for cos . into equation 4.35
will give a solution for the value of 0 between zero and 180° which corresponds to the
toggle position of a wiple-rocker linkage when driven from one rocker.

b+l -a’—d? ad

cosjL= 2he +Ec0592 =11
on
2 2 2 2
a‘+4°-b—c be
H=——t— 437
c0s%2 2ad ad ¢ )
und:
2 2 2 2
a“+d -b°-c* b
azmuk = [Ti;] Osazm“h &R

One of these + cases will produce an argument for the arccosine function which lies
between +1. The toggle angle which is in the first or second quadrant can be found from
this value. The other toggle angle will then be the negative of the one found, due to the
mirror symmetry of the two toggle positions about the ground link as shown in Figure
4-16 (p. 203). Program LINKAGES computes the values of these toggle angles for any
non-Grashof linkage.

4.13 CIRCUITS AND BRANCHES IN LINKAGES

In Section 4.5 (p. 183) it was noted that the fourbar linkage position problem has two
solutions which correspond 1o the two circuits of the linkage. This section will explore
the topics of circuits and branches in linkages in greater detail.

Chase and Mirth[2) define a circuit in a linkage as “all possible orientations of the
links that can be realized without disconnecting any of the joints” and a branch as “a
continuous series of positions of the mechanism on a circuit between two stationary con-
Jfigurations . . . The stationary configurations divide a circuit into a series of branches.” A
linkage may have one or more circuits each of which may contain one or more branches.
The number of circuits corresponds (o the number of solutions possible from the pusition
equations for the linkage.

Circuit defects are fatal to linkage operation, but branch defects are not. A mecha-
nism that must change circuits to move from one desired position to the other (referred to
as a circuit defect) is not useful as it cannot do so without disassembly and reassembly.
A mcchanism that changes branch when moving from one circuit to another (referred to
as a branch defect) may or may not be usable depending on the designer’s intent.

The tailgate linkage shown in Figure 3-2 (p. 101) is an example of a linkage with a
deliberate branch defect in its range of motion (actually at the limit of its range of mo-
tion). The toggle position (stationary configuration) that it reaches with the tailgate fully
open serves to hold it open. But the user can move it out of this stationary configuration
by rotating one of the links out of toggle. Folding chairs and tables often use n similar
schemc as do fold-down scats in automobilcs.

Another example of a common linkage with a branch defect is the slider-crank link-
age (crankshaft, connecting rod, and slider driving) used in every piston engine and shown
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fourbar doutle-rocker fourbar slider
FIGURE 4-21

Chreuts of the fourbar linkage

in Figure 13-3 (p. 663). This linkage has two toggle positicns (top and bottom dead
center) giving it two branches within one revolution of its crank. It works nevertheless
because it is carried through these stationary configurations by the angular momentum of
the rotating crank and its attached flywheel. One penalty is that the engine must be spun
to start it in order to build sufficient momentum to carry it through these toggle positions.

The Watt sixbar linkage can have four circuits, and the Stzphenson sixbar can have
either four or six circuits depending on which link is driving. Eightbar linkages can have
as many as 16 or 18 circuits, not all of which may be real, however.[2]

The number of circnits and branches in the fourbar linkage depends on its Grashof
condition and the inversion used. A non-Grashof, triple-rocker fourbar linkage has only
one circuit but has two branches. All Grashof fourbar linkages have two circuits, but the
number of branches per circuit differs with the inversion. The crank-rocker and double-
crank have only ong branch within each circuit. The double-rocker and rocker-crank have
two branches within each circuit. Table 4-1 summarizes these relationships.[2) Table 4-2
shows the circuits and branches for the two configurations of the fourbar slider linkage.
Figure 4-21 shows the circuits for the Grashof fourhar linkage and the fourhar slider.

Any soluticn for the position of a linkage must take into account the number of pos-
sible circuits that it contains. A closed-form solution, if available, will contain all the
circuits. An iterative solution such as is described in the next section will only yield the
position data for one circuit, and it may not be the one you expect.

209

TABLE 4-1
Circults & Branches
In the Fourbar Linkage
Fourbar Number Branches
lnkage of per

fype Circuits Circult
Non-

Grashof

tiple- 1 2
rocker

Grashof

crank- 2 1
rocker

Grashof”

dowle- 2 1
crarnk
Grashot”
double- 2 2
rocker
Grashot”
rocker- 2 2
crank

* valid only for non-special-
case Grashof linkages.

TABLE 4-2

Circuits & Branches

In the Fourbar Slider
Fourbar Number Branches
Slider of per
fype Circuits Circuit

Crank-

sider 2 1
Slider-
crank 2 2
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* Kramer [ statcs that “In
theory, any nonlinear alge-
braic system of equations can
he manipmlated into the form
of a single polynomial in cne
unknowr.. The roots of this
polyromial can then be used
to determine all unknowns in
the system. However, if the
derived polynomial is greater
than degree four, factoring
and/or same form of iteration
are necessary to obtain the
roots. In gencral, systems
that have more thon a fourth
degree polynomial asscciated
with the eliminant of all but
one varigble must be sclved
by iteration. However, if
factoring of the polynomial
into tarms of degree four or
less is possible, all roots may
be found without iteration.
Therefore the oaly truly sym-
bolic solutions are those that
cen be factored into terms of
Tourth degres or less. This

is the formal definifion of a
closed form solution.”

¥ Viete’s method from “De
Emendatione” by Francois
Viete {1615} as described in
reference [4].
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4.14 NEWTON-RAPHSON SOLUTION METHOD

The solution methods for position anatysis shown so far in this chapier are all of “closed
form,” meaning that they provide the solutivn with a direct, noniterutive approach.” In
some situations, particularly with multiloop mechanisms, a closed-form solution may not
be attainable. Then an altemative approach is needed, and the Newton-Raphson method
(sometimes just called Newton’s method) provides one that can solve sets of simultane-
ous nonlinear equations. Any iterative solution method requires that one or more guess
values be provided to start the computation. It then uses the guess values to obtain a new
solution that may be closer to the correct one. This process is repeated until it converges
to a solution close enough to the comrect one for practical purposes. However, there isno
guarantee that an iterative method will converge at all. It may diverge, taking successive
solutions further from the correct one, especially if the initial guess is not sufficiently
close to the real solution.

Though we will need to use the multidimensional (Newton-Raphson) version of
Newton's method for these linkage problems, it is easier to understand how the algorithm
warks by first discussing the one-dimensional Newton method for finding the roots of a
single nonlinear function in one independent variable. Then we will discuss the multidi-
mensional Newton-Raphson method.

One-Dimensional Root-Finding (Newton's Method)

A nonlinear function may have multiple roots, where a root is defined as the intersection
of the function with any straight line. Typically the zero axis of the independent variable
is the straight line for which we desire the roots. Tuke, for example, a cubic polynumial
which will have three roots, with either one or all three being real.

y=f(x)=—2"-2x2 + 50x+ 60 {4.38)

There is a closed-form solution for the rocts of a cubic function! which allows us to
calculate in advance that the roots of this particular cubic arc all real and arc x = —7.562,
-1.177, and 6.740.

Figure 4-22 shows this function plotted over a range of x. In Figure 4-22a, an initial
guess value of x; = 1.8 is chosen. Newton's algerithm evaluates the function for this guess
value, finding y;. The value of y; is compared to a user-selected tolerance (say 0.001) to
see if it is close enough to zero to call x; the root. If not, then the slope () of the function
atxy, y; is calculated either by using an analytic expression for the derivative of the func-
tion or by doing a numcrical differcntiation (lcss desirable). The cquation of the tangent
line is then evaluated to find its intercept at xp which is used as a new guess value. The
above process is repeated, finding yo; Lesting it against the user selected wlerunce; and, il
it is woo large, calculating another tangent line whose x intercept is used as a new guess
value. This process is repeated until the value of the function y; at the latest x; is close
enough to zero to satisfy the user.

The Newton algorithm described above can be expressed algebraically (in pseudo-
codc) as shown in cquation 4.39. The function for which the roots arc sought is f{x), and
its derivative is f'(x). The slope m of the tangent line is equal to f'(x) at the current point
Xis Y-
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(a) A guess of x=1.8cconvargestotherootatx=-1,177 (b) A guess of x =25 converges to tha root at x = -7.562
FIGURE 4-22
Newton-Rophson method of solutlon for roots of nonlnear functions
step 1 ¥ = flx)
step 2 [F y; <tolerance THEN STOP
step 3 m=f'(x,)
o=
step 4 X=X - * Kramer!®! points out that
step 5 Vigl = f(x,. +1) “the Newton Raphson al-
ofithm can exhibit chaetic
step6  IF .1 <tolerance THEN STOP e S e
ELSE x;=x;,, ! Y=Yy @ GOTOstepl (4.39)  multiple solutions to kine-
matic consirain: equations.
If the initial guess value is close to a root, this algorithm will converge rapidly to the - veon Raphson has no
3 ., . s - 2 mechanizm for distingunish-
solution. However, itis quite sensitive to the initial guess value. Figure 4-22b shows the S —
re:sult of a s]igl}t change in the initial guess from x; = 1.8 tox = 2.5. Wlththls slightly  tong” (circuits). He does
different guess it converges to another root. Note also that if we choose an initial guess of  an experiment with just two
x1=3.579 which corresponds to a local maximum of this function, the tangent line will be  links, exactly analogous to
harizontal and will not intersect the x axis at all. The method fails in this situation. Can finding the angles of the
you suggest a value of x; that would cause it to converge to the root at x = 6.74? coupler and rocker in the
fourbar linkage position
So this method has its drawbacks. It may fail to converge. It may behave chaoti- problem, and finds that the
cally.” It is sensitive to the guess value. It also is incapable of distinguishing between initiul guess vilues need
multiple circuits in a linkage. The circuit solution it finds is dependent on the initial guess. ;";;““hf‘ﬁm i ”
It requires that the function be differentiable, and the derivative as well as the function w:, Pogble :’.n ((’."e)‘:o -
must be evaluated at every step. Nevertheless, it is the method of choice for functions  ;y6iq divergence or chaotic
whose derivatives can be efficiently evaluated and which are continuous in the region  oscillation between the two
of the root. Furthermore, it is about the only choice for systems of nonlinear equations.  solutions.
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Multidimensional Root-Finding (Newton-Raphson Method)

The onc-dimensional Newton method is casily cxtended to multiple, simultancous, non-
linear equation scts and is then called the Newton-Raphson method. iirst, let’s generalize
the expression developed for the one-dimensional case in step 4 of equation 4.39. Refer
also to Figure 4-18 (p. 205).

Xip1 =4~ % or m(xp4 - xi)=_yx'
but: y=F(x) m=f'{x;) Xiy1 =X =Ax
substituting: F(x)-Ax=~f(x;) (4.40)

Here a Ax tarm is introduced which will approach zero as the solution converges. The Ax
term rather than y; will be tested against a selected tolerance in this case. Note that this
form of the equation avoids the division operation which is acceptable in a scalar equation
but impossible with a matrix equation.

A multidimensional problem will have a set of equations of the form

fi(x1,%2,X3, .0 X5)

X512 X2, X3, vers X )
fifl 2:X3: - ) =B 4.41)

fu(xl,xz, Xy enny x,,)
where the set of equations constilutes a vector, here called B.
Partial derivatives are required to obtain the slope terms

LA A
arl a'r2 arn

: : I |=A (4.42)
o Hh . FH

1 axZ axn

which form the Jacobian matrix of the system, here called A.
The errur terms are also a veclor, here called X,

~-X (4.43)

Equation 4.40 then becomes a matrix equation for the multidimensional case.
AX=-B (4.44)

Equation 4.44 can be solved for X either by matrix inversion or by Gaussian elimination.
The values of the elements of A and B are culculable for any assumed (guess) values of
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the variables. A criterion for convergence can be taken as the sum of the error vector X
al each iteration where the sum approaches zero at a root.

Let’s set up this Newton-Raphson solution for the fourbar linkage.

Newion-Raphson Solution for the Fourbar Linkage

The vector loop equation of the fourbar linkage, separated into its real and imaginary parts
(equations 4.6a and 4.6b, p. 187) provides the set of functions that define the two unknown
lirk angles 6, and B4. The link lengths, a, b, ¢, 4, and the input angle 8, are given.

f =acos®, +bcosB,—ccosB, —d=0

{4.453)
f» =asinB, +bsinfy —csinBy =0
B= aclosﬁz +b<?os93—c?os84 —-d (4.45b)
asin®, +bsin®, —csinf,
The error vector is:
A8,

f2]

% %

e 303 304 4 —bsiﬂ93 L‘Siﬂ94 44

o 0 o | bcosB; -ccosBy el

40, 20,

This matrix is known as the Jacobian of the system, and, in addition to its usefulness
in this solution method, it also tells something about the solvability of the system. The
system of equations for position, velocity, and acceleration (in all of which the Jacobian
appears) can only be solved if the valuc of the determinant of the Jacobian is nonzcro.

Substituting equations 4.45b, 4.46, and 4.47 into equation 4.44 gives:

[—bsin93 csin®, ][AB3]_ [ac0392 +bcosa3—cc0594—d:|

bcos8; —ccosBy ||AD, | |asin®, +bsin®, - csind,

(4.48)
To solve this matrix equation, guess values will have to be provided for 85 and 84 and
the two equations then solved simultaneously for A8, and A®4. For a larger system of
equations, a matrix reduction algorithm will need to be used. For this simple system in
two unknowns, the two equations can be solved by combination and reduction. The test
described abuve which compares the sumn of the values of A63 und A8y to & selected wwler-
ance must be applied after each iteration to determine if a root has been found.

Equation Solvers

Some commercially available equation solver software packages include the ability to
do a Newton-Raphson iterative solution on sets of nonlinear simultaneous equations.
TKSolver* and Mathcad' are examples. TKSolver automatically invokes its Newton-
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* Universal Technical
Systems, 1220 Rock St
Reckford, IL 61101, USA.
(800) 435-7887

t PTC Inc., 140 Kendrick
St. Needham, MA 02494
(781) 370-5000
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TABLE P4-0
Topic /PFroblem Matrix

4.10 Position of Any Point

4.14 Newton-Raphson

4.2 Position and Dis-
placement
4-53,4-57

4.5 Position Analysis of
Fourbar Linkages
4-1, 4-2,4-3, 44, 4-5
Graphical 4-6
Analytical 4-7,4-8,
4-18d, 4-24, 4-36,
4-39. 4-42, 415, 1-18,
4.51, 4-58, 4.59

4.6 Fourbar Crank-Sildsr
Positlan Solution
Graphlcal 4-9
Anaiytical 4-10,
4-18c, 4-18f,
4-18h, 4-20

4.7 Fourbar Slider-Crank
Position Solution
Graphical 4-80
Analytical 4-61

4.8 inverted Crank-Slid-
er Position Solulion
Graphical 4-11
Anaiylical 4-12,
4-48

4.9 Unkages of More
than Four Bars
Graphical GFBW
4-16
Analytical GHBM
4-17
Sibar 4-34, 4-36,
4-37,4-39, 440, 4142,
4.49, 4-51
Eightbar 4-43, 4-45

on a linkage
4-19,4-22, 4-23, 416

4.11 Tranamission Angles

4-13, 4-14, 4-18h,
4-18¢, 4-35, 4-38, 4-41,
4-44, 4-47, 4-50, 4-54

4.12 Toggle Posilions

4-15, 4184, 4-18g,
4-21,4-25, 426,
4-27,4-28, 426,
430, 482, 4-55, 456
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4.16

4-1
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“ Raphson solver when it cannot dircctly solve the presented equation set, provided that
enough guess values have been supplied for the unknowmns. These equation solver tools
are quite convenient in that the nser need only supply the equations for the sysiem in
“raw” form such as equation 4.45a . It is not necessary to arrange them into the Newton-
Raphson algorithm as shown in the previous section. Lacking such a commercial equa-
tion solver, you will have to write your own computer code to program the solution as
described above. Reference [5] is a useful aid in this regard. The DVD included with
this text contains example TK Solver files for the solution of this fourbar position problem
as well as others.
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PROBLEMS#

A position vector is defined as having a length equal 1 your height in inches (or cen-

timeters). The tangent of its angle is delined as your weight in pounds (or kilugrams)

divided by your age in years. Calculate the data for this vector and:

a. Draw the position vector to scale on cartesian axes.

b. Write an expression for the position vector using unit vector notation.

c. Write an expression for the position vector using complex number notatien, in both
polar and cartesian forms.

A particle is traveling along an arc of 6.5-in radius. The arc center is at the origin of
a coordinate system. When the particle is at position A, its position vector makes a

Sclution Method
4-31,4-32, 4-33

¥ All problem figures are provided as PDF files, and some are also provided as animated AVI and Working
Model files; all are on the DVD. PDF filenames are the same as the figure number. Run the file Animations.

hemi to access and run the animations.






