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Kinematics of Machinery 

POSITION ANAL¥SIS 
Theory is rhe distilled essence of practice 
RANKINE 

4.0 INTRODUCTION 

Chapter4 

Once a tentative mechanism design has been synthesired, it must then be analyzed. A 
principal goal of kinematic analysis is to determine the accelerations of all the moving 
parts in the assembly. Dynamic forces are proportional to acceleration. from Newton's 
second law. We need to know the dynamic forces in order to calculate the stresses in the 
component&. The design engine.er must ensure that the proposed mechanism or machine 
will not fail under its operating conditions. Thus the stresses in the materials must be 
kept well below allowable levels. To calculate the stresses, we need to know the static 
and dynamic forces on the parts. To c1Uculate the dynamic forces, we need to know the 
accelerations. In order to calculElte the nccelemtions, we must first find the positions of 
all the links or elements in the mechanism for each increment of input motion, and then 
differentiate the position equations versus time to find velocities, and then differentiate 
again to obtain the expressions for acceleration. For example, in a simple Grashof fourbar 
linkage, we would probably want to calculate the positions, velocities, and accelerations 
of the output Jinks (coupler and rocker) for perhaps every two degrees (180 positions) of 
input crank position for one revolution of the crank. 

This can be done by any of several methods. We could use a graphical approach to 
determine the position, velocity, and acceleration of the output links for all 180 positions 
of inten:81, or wt: could derive the i:enenl equatiulll!l of muLiun for any posiLiun, differ­
entiate for velocity and acceleration, and then solve these analytical expresmom for our 
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180 (or more) crank locatio.us. A computer will make this latter task much more palatable. 
If wt: i.;h(AA;e lu ust: Lhe graphicw approach lo arutlysis, we will ha,·e Lo du im irnlepem.lenl 
graphical solution for each of the positions of interest. None of the information obtained 
graphically for the first position will be applicable to the second position or to any oth­
ers. In contrast, once the analytical solution is derived for a particular mechanism, it 
can be quickly solved (with a computer) for all positions. If you want infonnation for 
more than 180 positions, it only means you will have to wait longer for the computer to 
generate those data. The derived equations are the same. So, have another cup of coffee 
while the computer crunches the numbers! In this chapter, we will present and derive 
analytical solutions to the position analysis problem for various planar mechanisms. We 
will also diRCuss graphical !lnlutions which are useful for checking your ana1ytica1 result,;. 
In Chapters 6 and 7 we will do the same for velocity and acceleration analysis of planar 
mechanisms. 

It is interesting to note that graphical pmition analysis of linkages is a truly trivial 
exercise, while the algebraic approach to position analysis is much more complicated. 
If you can draw the linkage to scale, you have then solved the position analysis problem 
graphically. It only remains to measure the link angles on the scale drawing to protractor 
accuracy. But the converse is true for velocity and e.'!(ICCially for acceleration anaJysiR. 
Analytical solutions for these Bre less complicated to derive than is the analytical position 
solution. However, graphical velocity and acceleration analysm becomes quite complex 
and difficult. Moreover, the graphical vector diagrams must be redone de nol'O (meaning 
literally from new) for each of the linkage positions of interest. This is a very tedious 
exercise and was the only practical method available in the days B.C. (Defore Computer), 
nol so lung ago. The proliferation of inexpensive Illll,Wl:Ulllpulers in n:cenl years has 
truly revolutionized the practice of engineering. As a graduate engineer, you will never 
be far from a computer of sufficient power to solve this type of problem and may even 
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Geez Joe, - now I wish I took that proQrammlng course! 
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•--* Note fuat a two-argument 
aictangent function must 
be used to cbtain angles 
in all focr quadrants. The 
single-argument arctangent 
function found in most 
calculators md computer 
programming languages 
returns angle values in only 
the first and fourth quad­
nmts. You can c:alculate 
your own two-argumern: 
BICtangent function very 
easily b)· testing the sign of 
the x component of the ar­
guments and, if X is minus, 
adding 11 radians or 180° to 
the result obtained from the 
available single-argument 
ll!Ctangent function. 

For example (in Fortran): 

FUNCTION Alan2( x, y ) 
IFx<>OTHENQ•y/x 
Temp= ATAN(Q) 
IFx<OTHEN 

Atan2 =Temp+ 3.14159 
ELSE 

Atan2=Temp 
E..'l"DIF 
RETURN 
E..'l"D 

1he above code assumes 
that the language used has 
11. buill-in !UD~c-argu1mml 
orotnngent function cnlled 
ATAN(x) which returns a."1 

angle between ± ff/2 radian~ 
wheTI given a ~igl'll'.rl argu­
ment representing ;be value 
of the tangent of that angle. 
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have one in your pocket. Thus, in this text we will emphasize analytical solutions which 
are e118ily sohed wilh a mil:rucomputer. The cumpule.r programs provided wilh lhis text 
use the same analytical techniques as derived in the text. 

4.1 COORDINATE SYSTEMS 
Coordinate systems and reference frames exist for the convenience of the engineer who 
defines them. In the next chapters we will provide our systems with multiple coordinate 
systems as needed, to aid in understanding and solving the problem. We will denote 
one of these as the global or abrolute coordinate system, and the others will be local 
coordinate systems within the global framework. The glohal system is often taken to he 
attached to Mother Earth, though it could as well be attached to anothec ground plane such 
as the frame of an automobile. If our goal is to analyze the motion of a windshield wiper 
blade, we may not care to include the gross motion of the automobile in the analysis. In 
that case a global coordinate system (GCS--dcnotcd asX,Y) attached to the car would be 
useful, and we could consider it to be an absolute coordinate system. Even if we use the 
earth as an absolute .reference frame, we must realize that it is J1ot stationary either, and 
as such is nut very useful ai, a refen:nu:: fnune fur 11 sp!!CC probe. Though we will !>pt:ll 
of absolute positions, velocities, and accelerations, keep in mind that ultimately, until we 
discover some stationary point in the universe, all motions are really relative. The term 
inertial reference frame is used to denote a system which itself has no acceleration. 
All angles in this text will be measured according to the right-hand rule. That is, coun­
terclockwise angles, angular velocities, and angular accelerations are positive in sign. 

Local coordinate systems are typkally attached to a link at some point of interest. 
This might be a pin joint, a center of gravity, or a line of centers of a link. These local 
coordinate systems may be either rotating or nonrotating as we desire. If we want to 
measure the angle of a link as it rotates in the global system, we probably will want to 
attach a local nonrotating coordinate system (LNCS-denoted as x, y) to some point on 
the link (say a pin joint). This nonrotating system will move with its origin on the link 
but remains always parallel to the global system. If we want to measure some parameters 
within a link, independent of its rotation, then we will want to construct a local rotating 
coordinate system (LRCS--denoted as x' ,y') along some line on the link. This system 
will both move and rotate v.ith the link in the global system. Most often we will need to 
have both types of local coordinate syitems (LNCS and LRCS) on our moving links to 
do a complete analysk Obviously we must define the angles and/or positions of these 
moving, local coordinate systems in the global system at all positions of interesL 

4.2 POSITION AND DISPLACEMENT 

Position 

The position of a point in the plane can be defined by the use of a position vector as 
shown in Figure 4-1. The choice of reference axes is arbitrary and is selected to suit the 
observer. Figure 4-1 a shows a point in the plane de.fined in a global coordinate system 
and Figure 4-1 b shows the same point defined in a local coordinate system with its origin 
coincident with the global system A two-dimensional vector has two attributes, which 
can be expressed in either polar or cartesian coordinates. The polar form provides the 
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y 

A 
Polar form: 

I RA I @/..!_ 

Cartesian form: 

Rx, Ry 

X 

Rx 

(a) Glooal coordinate system XY 

FISU;E .4-1 

Rx 

(b) Local coordinate system xy 

A position vector In the plane • expressed In both glooal and local coordinates 

magnitude and the angle of the vector. The cartesian form provides the X and Y compo­
nents of the vector. Each form is directly convertible into the other by• 

the Pythagorean theorem: 

and trigonometry: (4.0a) 

0= arotan( :: ) 

Equations 4.0a are shown in global coordinates but could as well be expressed in local 
coordinates. 

Coordinate Transformation 

1t is often necessary to transform the coordinates of a point defined in one system to co­
ordinates in another. If the system's origins are coincident as shown in Figure 4-1 b and 
the required transfonnation is a rotation, it can be expressed in terms of the original coor­
dinates and the signed angle B between the coordinate systems. If the position of point A 
in Figure 4-1 b is expressed in the local xy system as Rx, Ry, and it is desired to transform 
its coordinates to Rx, Ry in the global XY system, the equations are: 

Displacement 

Rx =Rxcosl>-R,sinli 

Ry =Rxsm6+R 1 cos!i 
(4.0b) 

Displacement of a point is the change in its position and can be defined as the straighl­
line distance between the initial andfmal pmition of a point which has moved in the refer­
ence frame. Note that displacement is not necessarily the same as the path length which 
the point may have traveled to get from its initial to final position. Figure 4-2a shows a 
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Polar form: 

IRA I@/• 

Cartesian form: 

R,.,R,, 
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FIGURE 4-2 

Position difference and relative position 

point in two positions, A and B. The cU1Ved line depicts the path along which the point 
traveled. The position vector RaA defines the displacement of the pointB with respect to 
point A. Figure 4-2b defines this situation more rigorously and with respect to a reference 
frwne XY. The notation R will be used to denote 11 position vector. The vectors R.4 llild R8 
define, respectively, the absolute positions of points A and B with respect to this global KY 
reference frame. Toe vector RsA denotes the difference in position, or the displacemeru, 
between A ttml B. Thill can be exprcssro tts lhe position difference equation: 

(4.la) 

This expre!!.'lion is read: ThP. pn.ritinn nf R with re.,per.t tn Ai, equa.l tn the (ah.mlute) 
position ofB minus the (absolute) position of A, where absolute means with respect to the 
origin of the global reference frame. This expression could also be written as: 

(4.lb) 

with the second subscript O denoting the origin of the XY reference frame. When a 
position vector is rooted at the origin of the reference frame, it is customary to omit the 
second subscript It is understood, in its absence, to be the origin. Also, a vector referred 
to the origin, such as RA, is often called an absolute vector. Thls means that it is taken 
with respect to a reference frame which is assumed to he stationary, e.g., the gmund. Tt 
is important to realiz.e, however, that the ground is um ally also in motion in some larger 
frame of reference. Figure 4-2c shows a graphical solution to equations 4.1. 
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In our example of Figure4-2, we have tacitly assumed so far that this point, which is 
first located at A and later at B, is, in fact, the same particle, moving within the reference 
frame. It could be, for example, one automobile mo,ing along the road from A to B. With 
that assumption, it is conventional to refer to the vector RsA as a position difference. 
There is, however, another situation which leads to the same diagram and equation but 
needs a different name. Assume now that points A and B in Figure 4-2b represent not 
the same particle but two independent particles moving in the same reference frame, as 
perhaps two automobiles traveling on the same road. The vector equations 4.1 and the 
diagram in Figure 4-2b still are valid, but we now refer to RaA as a relative position, or 
apparent position. We will use the relative position term here. Amore formal way to 
distinguish between these two cases is as follows: 

CASE 1: One body in two successive positions => position difference 

CASE2: Two bodies sirnultarieou.sly iri separate positions=> relative positiori 

This may seem a rather fine point to distinguish, but the distinction will prove useful, 
and the reasons for it more clear, when we analyze velocities and accelerations, especially 
when we encounter (Case 2 type) situations in which the two bodies occupy the same 
position at the same time but have different motions. 

4.3 TRANSLATION, ROTATION, AND COMPLEX MOTION 

So far we have been dealing with a particle, or point, in p1ane motion. It is more interest­
ing to consider the motion of a rigid body, or link, which involves both the position of a 
point on the Jin k and the orientation of a line on the link, sometimes called the POSE of 
the link Figure4-3a (p.180) shows a link AB denoted by a position vector RsA• An axii 
system has been set up at the root of the vector, at point A, for convenience. 

Translation 

Figure 4-3b shows link AB moved to a new position A 'B' by translation through the 
displacement AA' or BB 'which are equal, ie., RA~ =Ra·B. 

A definition of translation is: 

All points on the body have the same displacement. 

As a resuk the link retains its angular orientation. Note that the translation need not 
be along a straight path. The curved lines from A to A' and B to B' are the curvilinear 
translation path of the link. There is no rotation of the link if these paths are porolleL If 
the path happens to be straight, then it will be the special case of rectilinear translation, 
and the path and the displacement will be the same. 

Rotation 

Figure 4-3c shows the same link AB moved from its original position at the origin by 
rotation through an angle. Point A remains at the origin, but B moves through the position 
difference vector R11,8 =R8 ,A -R 11A • 
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J ► X 

·, '- Curvilinear translation path 

(b) 

B' 

(d) 

Translation. rotation, and complex motion 

A definition of rotation is: 
Different points in the body undergo different displacements and thus there is a displace­
ment difference between any two points chosen. 

The link now changes its angular orientation in the reference frame, and all points have 
different displacements. 

Complex Motion 

The general case of complex motion is the sum of the translation and rotation compo­
nents. Figure 4-3d shows the same link moved through both a translation and a rotation. 
Note that the order in which these two components are added is immaterial. The resulting 
complex displacement will be the same whether you first rotate and then translate or vice 
versa. This ill so because the two factors are independent 'lhe total complex displace­
ment of pointB ill defined by the following expression: 
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Total displacement = translation component+ rotation wmponent 

Ra•B=RB'B+RB•B' (4.lc) 

The new absolute position of point B referred to the origin at A is: 

RB'A =RA'A +Ra"A' (4.ld) 

Note that the above tv.·o fonnulas are merely applications of the position difference 
equation 4.la (p. 178). See also Section 2.2 (p. 31) for definitions and discussion of 
rotation, translation, and complex motion. These motion states can be expressed as the 
following theorems. 

Theorems 

Euler's theorem: 
The general di.~plar.ement nf a rigid hody with rme pnim fixed i.~ a rntatinn ahnut snmP. 
mis. 

This applies to pure rotation as defined above and in Section 2.2 (p. 31). Chasles 
(1793-1880) provided a corollary to Euler's theorem now known as: 

Chasles • theorem: [6) * 

Any displacement of a rigid body is equivalent to the sum of a translation rf any one point 
on that body and a rotation of the body about an axis through tlwt poinl. 

This describes complex motion as defined above and in Section 2.2. Note that equation 
4. lc is an expression of Cbasles' theorem. 

4.4 GRAPHICAL POSITION ANALYSIS OF LINKAGES 

For any one-DOF linkage, such as a fourbar, only one parameter is needed to completely 
define the p05itions of ull the links. The parameterusunlly chosen is the angle of the input 
link. This is shown as Oi in Figure 4-4 (p. 182). We want to find 03 and 84. The link 
lengths are known. Note that we will consistendy number the ground link as I and the 
chiver link as 2 in lh~e ex!IIDples. 

The graphical analysis of this problem is trivial and can be done using only high­
school geometry. If we draw the linkage carefully to scale with rule, compass, and pro­
tractor in a particular position (given 02,), then it is only necessary to measure the angles 
of links 3 mid 4 with the protractor. Note that all link angles are measured from 11 positive 
X axis. In Figure 4-4, a local xy axis system, parallel to the global XY systan, has been 
created at point A to measure 83. The accuracy of this graphical solution will be limited 
by our l:are !llld drafling ability and by the Lrudity uf lhe prullllCtur usw. Neverthele11s, a 
very rapid approximate solution can be found for any one position. 

Figure 4-5 (p. 182) shows the construction of the graphical position solution. The 
four link lengths a, b, c, d and the angle 82 of the input link are given. First, the ground 
link (1) and the input link (2) arc drawn to a convenient scale such that they intersect at 
the origin 0 2 of the global XY coordinate system with link 2 placed at the input angle (½. 
Link 1 is drawn along theX axis for convenience. The compass is set to the scaled length 
uf link. 3, and an an; of lhaL radius is 8wung abuul the::. end of link. 2 (point A). Then lhe 
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* Ceccerel.li.l7l points 
not that r.h111des' theorem 
(Peria, 1830) was put forth 
earlier (Naples, 1763) by 
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known or ignored in the rest 
of Ellrope, end the theorem 
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Cbasles' name. 
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y 

B 

~H+'f--'r--....,__---------+-r+1-+------'---- X 
Oz GCS 

FIGURE 4-4 

Measurement of angles In the fourbar linkage 

comptll!~ is seL lo lhe ~cu.led length of link. 4, and a second an: is swung abouL Lhe end of 
link 1 (point O 4). These two arcs v.ill have two intersections at B and B' that define the 
two solutions to the position problem for a fourbar linkage which can be assembled in 
two configurations, called circuits, labeled open and crossed in .Figure 4-5. Circuits in 
linkages will be discussed in a later section. 

The angles of links 3 and 4 can be measured with a protractor. One circuit has angles 
03 and 84, the other 03· and 94 •. A graphical solution is only valid for the particular value 
of inpuL llllgle used. Fur each additional posiliun llllw.ysis we must completely redraw 
the linkage. This can become burdensome if we need a complete analysis at every 1-or 
2-degree incrementof82, In that case we will be better off to derive an analytical solution 
for 83 and 84 that can be solved by computer. 

Crossed 

FIGURE 4-5 

X nc.s 

Graphical position soh.itlon to the open and crossed configurations of the fourbar linkage 
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4.5 ALGEBRAIC POSITION ANALYSIS OF LINKAGES 

The same procedure that was used in Figure 4-5 to solve geometrically for the intersec­
tiuns B and B' and angles of Im 3 and 4 can be encodoo intu an algebraic algorithm. 
The coordinates of point A are found from 

Ax-acos8 2 

Ay =asin82 
(4.2a) 

The coordinates of point B are found using the equations of circles about A and 0 4. 

2 ( )2 2 C = B,,-d +B .• 

which provide a pair of simultaneous equations in Bx and B_v­

Subtracting equation 4.2c from 4.2b gives an expression for Bx. 

B _tl--b 2 +r:'1-d 2 2A1By =S ZAyBy 
:r 2(A_.-d) 2(A.,-d) 2(A.,-d) 

(4.2b) 

(4.2c) 

(4.2d) 

Substituting equation 4.2d into 4.2c gives a quadratic equation in By which has two 
solutions corresponding to those in Figure 4-5. 

(4.2e) 

This can be solved with the familiar expression for the roots of a quadratic equation, 

-Q±,/Q 2 -4PR 
B = -=---'-=---

y 2P 
where: 

A2 
P= 1 +1 

(Ax -d}2 

R=(d-S) 2 -r:'1 

2.4,(d-S) 
Q- A -d 

X 

(4.2f) 

Note that the solutions to this equation set can be real or imaginary. If the latter, it 
indicates that the links cannot connect at the given input angle or at all. Once the two 
values of By are found (if real), they can be substituted into equation 4.2d to find their 
corresponding x components. The link angles for this position can then be found from 

(4.2g) 

185 

183 



186 Kinematics of Machinery 

164 

• 

DESIGN OF MACHINERY CHAPTER 4 

A two-argument arctangent function must be used to solve equations 4.2g s.ince the anglc:5 
(;an re in any quadrant. Equations 4.2 can be encoded in any computer language ur 
equation solver, and the value of 82 varied over the linkage•s usable range to find all cor­
responding values of the other two link angles. 

Vector Loop Representation of Linkages 

An alternate approach to linkage position analysis creates a vector loop ( or loops) around 
the linkage as first proposed by Raven.l91 This approach offers some advantages in the 
synthesis of linkages which will be arldre~sed in Chapter 5. The links are repre~nted as 
position vectors. Figure 4-6 shows the same fourbar linkage as in Figure 4-4 (p. 182), 
but the links are now drawn as position vectors that fonn a vector loop. This loop closes 
on itself, making the sum of the vector.; around the loop zero. The lengths of the vectors 
are the link lengths, which are known. The current linkage position is defined by the input 
angle 02 as it is a one-DOF mechanism. We want to solve for the unknown angles 03 and 
84. To do so we need a convenient notation to represent the vectors. 

Complex Numbers as Vectors 

There are many ways to represent ,·ectors. They may be defined in polar coordinates, 
by their magnitude and angle, or in cartesian coordinates as x and y components. These 
forms are of course easily convertible from one to the other using equations 4.0a. The 
position vectors in Figure 4-6 can be represented as any of these expressions: 

Polar form 

R@L0 

rei9 

CarteWll! form 

rcos9i+rsin9j 

rcos9+ jrsin9 

(4.3a) 

(4.3b) 

Equation 4.3a uses 11Dit vectors to represent the x and y vector component direc­
tions in the carte~ian form. Figure 4-7 shows the unit vector notation for a position vec­
tor. Equation 4.3b uses complex number notation wherein the X direction component 
is called the real portion and the Y direction component is called the imaginary portion. 
This unfortunate term imaginary comes about because of the use of the notation j to 
represent the square root of minus one, which of course cannot be evaluated numerically. 

y D 

-f-f-fHe---'----------~4}-\,----..J......- X 
02 

FIGURE 4-6 

Position vector loop for a fourbar llnk::ige 
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However, this imagi11ary number is used in a complex number as an operator, not as a 
value. Figure 4-811 (p. 186) shows lhe complex plane in whkh the:: real ws represents 
the X-directed component of the vector in the plane, and the imaginary axis represents 
the Y-directed component of the same vector. So, any term in a complex nwnber which 
has no j operator is an x component, and a J indicates a y component 

Note in Figure 4-8b (p. 186) tho.teach multiplication of the ,·ector RA by the opera­
tor j results in a counterclockwise rotation of the vector through 90 degrees. The vector 
RB = jR.A is directed along the positive imaginary or j axis. The vector Re= jl RA is di­
recl.t:d ttlung the negative real llXis because fl= -1 and Lhus Re =-RA. In filIIli1ar fl!Sbion. 
RD = P RA = -JRA and this component is directed along the negarive j axis. 

One advantage of using this complex number notation to represent planar vectors 
comes from the Euler identity: 

(4.4a) 

Any two-dimensional vector can be represente.d by the compact polar notation on the 
left side of equation 4.4a. There is no easier function to differentiate or integrate, since 
it is its own derivative: 

cuie . 
--=Jeie 

d0 
(4.4b) 

We will use this complex number notation for vectors to develop and derive the 
equations for position, velocity, and acceleration of linkages. 

The vector Loop Equation for a Fourbar Linkage 

The directions of the position vectors in Figure 4-6 are chosen so as to define their angles 
where we desire them to be measured. By definition, the angle of a vector is always 
measured at its root, not oJ its head. We would like angle 84 to be measured at the fixed 
pivot 04, so vector It! is arranged to have its root at that point We would like to measure 
angle 83 at the point where links 2 and 3 join, so vector R3 is rooted there. A similar logic 
dictates the arrangement of vectors R 1 and R2. Note that the X (real) axis is taken for 
convenience along link 1 and the origin of the global coordinate system is taken at point 

" Rsin8J 

FIGURE 4-7 

Y4. 

#r 

Rcose i 

0 
I 

Urit vector notation for position vectors 

A 

Cartesian form: 
A A 

Rcos0 i, Rsin9j 
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1&6 

jRsin 0 

Imaginary 

j 

\ 
0 

Rcos8 

Polar form: R e j(J 

Cartesian form: R cos 8 + j R sin 0 

R =IRA I 

A 
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Imaginary 
j 

Real RD=lR=-jR _/ 
D 

(a) Complex numbe· representation of a position vec·or 

FIGURE 4-8 

(b) Vector rotations In the complex plane 

Complex number representation of vectors In the plane 

02, the root of the input link vector R2. These choices of vector directions and senses, 
11s indicnted by their nrrowheads, lead to this vector loop equotion: 

(4.5a) 

An alternate notation for these position Yectors is to use the labels of the points at 
the vector tips and roots (in that order) as subscripts. The second subscript is convention­
ally omitted if it is the origin of the global coordinate system (p>int 02): 

(4.Sb) 

Next, we substitute the complex number notation for each position vector. To sim­
plify the notation and minimi7.e the use of suhscript'l, we will denote the scalar lengths of 
the four links as a, b, c, and d. These are so labeled in Figure 4-6 (p. 184). The equation 
then becomes: 

(4.5c) 

These are three forms of the same vector equation, and as such can be solved for two 
unknowns. There are four variables in this equation, namely the four link angles. The 
link: lengths arc all constant in this particular linkage. Also, the value of the angle of link 
1 is fixed (at zero) since this is the ground link. The independent variable is Oz which we 
will conlrol wilh a motor or other driver device. Thal leaves the t1I1gles of link. 3 aml 4 Lu 

be found. We need algebraic expressions which define 03 and 04 as functions only of lhe 
constant link lengths and the one input angle, f½. These expressions will be of the form: 
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83 = /{ a,b, c, d, IJ2} 

84 =g{a, b,c, d, 82} 
(4.5d) 

To solve the polar form, vector equation 4.Sc, we must substitute the Euler equivalents 
(equation 4.4a, p. 185) for the eJ9 terms, and then separate the resulting cartesian form 
vector equation into two scalar equatioru which can be solved simultaneously for 8J and 
8,i. Substituting equation 4.4a into equation 4.5c: 

a(cos82 + jsin8 2)+b(cos8 3+ jsin8 3)-c(cos9 4 + jsin84)-d(cos8 1 + jsin9 1)= 0 (4.5e) 

This equation can now be separated into its real and imaginary parts and each set to zero. 

real pan (x component): 

aoos82 +bcos8 0 -ccos8 4 -dcos9 1 =0 

but: 81 = 0, so: 

aoos82 +bcos8 3 -ccos8 4 -d = 0 

imaginary part (y component): 

psin~ + Jb~in83-jc:sin84 -jdsin81 =O 

but: 81 = 0, and the j's divide out, so: 

asin~ +bsin83 -csin84 =O 

(4.6a) 

(4.6b) 

The scalar equations 4.6a and 4.6b can now be solved simultaneously for 83 and 
84. 'lb solve this set of two simultaneous trigonometric equations is straightforward but 
tedious. Some substitution of trigonometric identities will simplify the expressions. The 
first step is to rewrite equations 4.6a and 4.6b so as to isolate one of the two unknowns 
on the left side. We will isolate 83 and solve for 84 in this example. 

bcost13 =-acos8 2 +ccost14 +d 

bsin8~ =-asin8 2 +csin84 

Now square both sides of equations 4.6c and 4.6d and add them: 

(4.6c) 

(4.6d) 

b2 {sin2 83 +cos2 83) =(-asinOi +csin84 )2 +(-acos8 2 +ccos84 +d}°" (4.7a) 

Note that the quantity in parentheses on the left side is equal to 1, eliminating 83 from 
the equation, leaving only 04 which can now be solved for. 

(4.7b) 

Expand this expression and collect tenru. 

b2 =,i2+c 2+d 2 -2adcos0 2 +2cdcos84 -2ac(sin8i sinB4 +cos82 cosB4 ) (4.7c) 

Divide through by 2ac and rearrange to get: 
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To further simplify this expression, the constants K1, K2, andK3 are defined in tenns 
of the constant link lengths in equation 4.7d: 

(4.8a) 

and: 

(4.Bb) 

If we substitute the identity cos(82 -84)=cos8zcos84 +sin82 sin84, we get the form 
known as Freudenstein 's equation. 

(4.8c) 

In order to reduce equation 4.8b to a more tractable form for solution, it will be use­
ful to substitute the half-anl{le identities which will convert the sin 84 and cos 84 tenns 
to tan 84 terms: 

2tan 84 
. e 2 

5Jll 4 = 
l+tan2 84 

2 

(4.9) 

This results in the following simplified form, where the link lengths and known input 
value ( 92) terms have been collected as constants A, H, and C. 

where: 

A mn2( 0; }Bmn( 6; }c=O 

A=cos8 2 -K 1 -X 2 cos82 +X 3 

B=-2sin8 2 

C=K 1 -(K 2 +1)cos8:z +K3 

Note that equation 4.10a is quadratic in form, and the solution is: 

tan(84 )- -B±✓B1.-4AC 
2 2A 

e =2arotan.[-B±✓B2 -4AC) 
4t,2 2A 

(4.10a) 

(4.10b) 

Equation 4.lO'o has two solutions, obtained from the± conditions on the radical. 
These two solutions, as with any quadratic equation, may be of three t}pes: real and equal, 
real and unequal, complex conjugate. If the discriminant under the radical is negative, 
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then the solution is compleic conjugate, which simply means that the link lengths chosen 
are nut capable of connecliun for I.he chosen value of the input angle 82. This can occw­
either when the link lengths are completely incapable of connection in any position or, in 
a non-Grashof linkage, when the input angle is beyond a toggle limit position. There is 
then no real solution for that value of input angle 82. Excepting this situation, the solu­
tion will usually be real and unequal, meaning there are two values of 84 corresponding 
to any one value of 82. These are referred to as the cnmed and open configurations of 
the linkage and also as the two circuits of the linkage.• In the fourbar linkage, the minus 
solution gives 84 for the open configuration and the positive solution gives 84 for the 
crossed configuration 

Figure 4-5 (p. 182) shows both crossed and open solutions for a Grashof crank-rocker 
linkage. The terms crossed and open are based on the assumption that the input link 2, for 
which (½ is defined, is placed in the first quadrant (ie., 0 < 82 < fl/2). A Grashof linkage 
is then defined as crossed if the two links adjacent to the shortest link cross one another, 
and as open if they do not cross one another in this position. Note that the configurati.on 
of the linkage, either crossed or open, is solely dependent upon the way that the links are 
assembled. You cannot predict, based on link lengths alone, which of the solutions will 
he the desired one. Tn other words, you can ohtain either solution with the same linkage 
by simply taking apart the pin which connects links 3 and 4 in Figure 4-5 (p. 182), and 
moving those link£ to the only other positions at which the pin will again connect them. 
In so doing, you will have switched from one position solution, or cirwit, to the other. 

The solution for angle OJ is essenti.ally similar to that for 84. Returning to equations 
4.6, we can rearrange them to isolate 84 on the left side. 

coos94 =acos9 2 +bcos03 -d 
csin94 = asin02 + bsin03 

(4.6e) 

(4.60 

Squaring and adding these equations will eliminate 84. The resulting equation can be 
solved for A3 a.-: was done above for A4, yielding this expres~im: 

The constant K1 is the same as defined in equation 4.8b, and K4 and Ks are: 

1bis also reduces to a quadratic form: 

where 

and the solution is: 

Dtan2( 8; )+Etan(; )+F=O 

D= cos9:!-K 1 +K4 cos92 +Ks 
E=-2sin02 

F=K 1 +{K4-l)cos9 2 +K 5 

(4.lla) 

(4.1 lb) 

(4.12) 
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(4.13) 

As with the angle 84, this also has two solutions, corresponding to the crossed and 
open circuits of the linkage, as shown in Figure 4-5 (p. 182). 

~EXAMPLE 4-1 

PoSltlon Analysis of a 1-ourbar Unl<age with the vector Loop Method. 

Problem: Given a fourbar linkage with the link lengths L1 = d = 100 mm, Li = a = 40 mm, 

L3 = b = 120 mm.L.i = c = 80 mm. For 9:z = 40° find all possible values of 93 and 84. 

SOiution: See .t1igure4-6 (p. 11!4) tor nomenclature. 

1 Using equation 4.8a, calculate the link ratios K1, K2 and K3. 

d 100 
K1=-=-=2.5 

a 40 
d 100 

K2 =-=-=l.25 (a) 
C 80 

a2 -b 2 +c 2 +d 2 402-120 2 +sa2 +HD2 

~J = 2ac - 2(40)(80) = 0.562 

2 Use these link ratios to find the intermediate parameters A, B, and C from equation 4.10a. 

A= cos82 -Ki -K2 ca182 +K3 = cos(40°)-2.5-125cos(40°)+0.562=-2.129 

B=-2sin8i=-2sin(40°)=-l.286 (b) 

C =K1 -(Kz +l)cos82+K3= 2.5-{l.2S+l)cos(40")+0.562 =l.339 

3 Use equation 4.10b to find 94 for both the open and crossed configurations. 

( -B- ✓B2 -4AC) --(l.ZH6-J-1.2t16 2 -4(-2.129)(1.339)] 9 =2arctan =2 
4"""' 2A 2(-2.129) 

=57.33° 
(c) 

8 =Zarctan ----- =2an:tan-------,-----,-----(-B+✓B2-4AC) (l.286+J-1.286 2 -4(-2.129)(1.339)] 
4,,,..,,..., 2A 2(-2.129) 

=-98.01° 

4 Use equation 4.11 b to find the ratios K4 and K5. 
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y 

FIGURE 4·9 

So utlon to Example 4-1 

d 100 
K4 = h = 120 = o_g33 

circuit2 
(crossed) 

c2 -i 1 -a 2 -b 2 802 - 1002 -40 2 -120 2 

Ks= 2ah = 2(40)(120) -- 2 .042 

5 Use equation 4.12 to find the intennediate parameters D, E, and F. 

B 

circuit 1 
(open) 

D= Ull!l82 -Ki +K41:u~82 +K 5 = Lus(40")-2.5+0.833(40°)-2.042 =-3.137 

(d) 

E=-2sin8 2 =-2sin(40°)=-l.286 (e) 

F-K 1 +(K 4 -l)cos9 2 +K 3 - 2.5+(0.833-l)cos(40°)-2042- 0.331 

6 Use equation 4.13 to find 8~ for both the open and crosied configurations. 

(
-E-•.iE 2 -4DF l (l.286-f-I.286 2 -4(-3.137)(0.331)] 

83- =21111:tan ----'-2-D-- =lim:tm __ ..,___2-(--3-.13....;.7_)_..;...;..._ ...... 

= 20.30° (f) 

8 = 2an:tan ----- =2 (-E+✓E2 -4DF l --(l.286+J-1.286 2-4(-3.137)(0.331)) 
3=....d 2D 2(-3.137) 

=-60.98° 

7 The solution is shown in Figure 4-9. 
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,- slider axis 
- - ..-:!; ___ ---

otlset 

FIGUIU 4-10 

Position vector loop for a fourbar crank-slider or slider-crank linkage 

4.6 THE FOURBAR CRANK-SLIDER POSITION SOLUTION 

The same vector loop approach as used for the pure pin-jointed fourbar can be applied to 
a linkage containing sliders. Figure 4-10 shows an offset fourbar crank-slider linkage, 
in\iersion #1. The term offset means tllat the slider axis extended does not pass through 
the crank pivot. This is the general case. (The nonoffset crank-slider linkages shown 
in Figure 2-13 (p. 52) are the special cases.) This linkage could be represented by only 
three position vectors, R2, R1, and Rt, but one of them (R_f) will be a vector of varying 
magnitude and angle. It will be easier to use four vectors, R1, R2, R3, and~ with R1 ar­
ranged parallel to the axis of sliding and R,i perpendicular. In effect the pair ofvectors R1 
and R4 are orthogonal components of the position vector Rs from the origin to the slider. 

It simplifies the analysis to arrange one coordinate axis parallel to the axis of sliding. 
The variable-length, constant-direction vector R 1 then represents the slider position with 
magnitude d. The vector R,i is orthogonal to R 1 and defines the constant magnitude offset 
of the linkage. Note that for the special-case, non offset version, the vector ~ will be z.ero 
and R1 = Rs. The vectors R2 and R3 complete the vector loop. The coupler's position 
vector R3 is placed with its root at the slider which then defines its angle 83 at point B. 
This particular arrangement of position vectnn; lead~ to a vector loop equation similar to 
the pin-jointed fourbar example: 

(4.14a) 

Compare equation 4.14a to equation 4.5a (p. 186) and note that the only difference 
is the sign of R1. This is due solely to the somewhat arbitrary choice of the sense of 
the position vector R3 in each case. The angle ~ must always be measured at the root 
of vector R3, and in this example it will be convenient to have that angle 83 at the joint 
laheled R. Once these arhitrary choices are made it is crucial that the re.o;ulting algehraic 
signs be carefully observed in the equations, or the results will be completely erroneous. 
Letting the vector magnitudes (link lengths) be represented by a, b, c, d as shown, we can 
substitute the complex number equivlllents for the position vectors. 

(4.14b) 
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Substitute the Euler equivalents: 

a(cos8 2 + jsin9 2 )-b(cos9 3 + jsin9 3) 

-c(cos9 4 + jsin8 4 )-d(cos9 1 + jsin81)=0 

Separate the real and imaginary components: 

real part (x component): 

acos82 -beos0 3 -ccos0 4 -dcos8 1 = D 
but: 91=0, so: a0068z-bcos83-ccos84-d=D 

imaginw:y part (y component): 

jasin9 2 - jbsin.03 -jcsin8, - jdsin91 = 0 

but: 81 =0, andrhej's divideout,so: 

asin8 2 -bsin0 3 -csin9 4 =O 

(4.14c) 

(4.15a) 

(4.15b) 

We want to solve equations 4.15 simultaneously for the two unknowns, link length d 
and link angle 8:3. The independent variable is crank angle 92, Link lengths a and b, the 
offset c, and ongle 94 ore known. But note that since we set up the coordinate system to 
be parallel and perpendicular to the axis of the slider block, the angle 81 is zero and 84 is 
90". Equation 4.15b can be solved for 63 and the result substituted into equation 4.15a 
tu solve ford. The solution il,: 

0'.ii =arosn( asin: 2 -c) 

d=acos8 2 -bcos8 3 

(4.16a) 

(4.16b) 

Note that there are again two valid solutions corresponding to the two circuits of the 
linkage. The arcsine function ii; multivalued. Its evaluation will give a value between 
±90° representing only one circuit of the linkage. The value of dis dependent on the 
calculated value of 03. The value of 9J for the second circuit of the linkage can he found 
from: 

• ( asin8 2 -c) 83:2 = l:IIC!illl - h + 1t (4.17) 

heXAMPLE 4-2 

Position Andysis of a Fourbar Crank-Sider Linkage with the Vector Loop Method. 

Probfem: 

Solution: 

Given a fourbar crank-slider linkage with the link lengths Li = a = 40 mm,~ = 
b = 120 mm. offzet = c = -20 mm. For ~ = 60~ find all possible values of 81 and 
slider position d. 

(See Figure 4-10 for nomenclature.) 

1 Using equation 4.16a, calculate the link.coupler angle 83 for the open configuration. 
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circuit 2 
(crossed) 

llidecaxis 

oft'set c = -20 mm 

circuit l 
(open) 

'----
, ____ llcros=1 = -86.84 mm ------ d0P~"::: 126.84 mm 

-0 = 152.91° 

Solution to Example 4-2 

8 = arcsin 2 = 111t:Sin _ __,~.,__.,__~ = 15291° ( asin8 -c) (40sin(60")-(-20)) 
3-,- b 120 

(a) 

2 Csmg equation 4.16b and the result from step 1, calculate slider position d for open linkage. 

d=acos8 2 -bcos8 3 =40cos(W")-J20cos(152.91")=126.84 mm (b) 

3 L"smg equation 4.17, calculate The link coupler angle 83 for the crossed configuration. 

~ -arcan{ asin02 -c) _ • ( 40sin(6U")-(-2U)) _ 27090 - ---'~-+K-IIJCIIID. ---'~"--~~ +ff- . 
'"'"" h 120 

(c) 

4 C smg equation 4.16b and the result from step 3, calculate slider position d for crossed linkage. 

d=acos8 2 -hcos8 3 =40cos(00°)-12Dcos(27.W")=-86.84 mm (d) 

5 ~-ote that IIJ is measured at the slider end of the coupler as shown in Figure 4-11. 

4.7 THE FOURBAR SLIDER-CRANK POSITION SOLUTION 

Thefourbar slider-cmnk linkage has the same geometry as tbefourbar crank-slider 
linkage that was analyzed in the previous section. The name change indicates that it will 
be driven with the slider as input and the crank as output. This is sometimes referre.d to 
as a ''back-driven" crank-slider. We will use the term slider-crank to define it as slider­
driven. This is a very commonly used linkage configuration. Bveiy internal-combustion 
piston engine has as many of these as it has cylinders. The vector loop is as shown in 
Pigure4-10 (p. 192) and the vector loop equation is identical to cquation4.14a. Dutnow 
we must solve this equation fur 82 ilS a funcliun of slider position d. 

Start with equation 4.14a. make the substitutions of equation 4.14h and the simpli­
fications of equations 4.15 to get the same simultaneous equation set: 
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hut 

so 

acos82 -1'costl 3 -ccoslJ4 -d=U 

asin82 -bsin83-csin84 =0 

a cos Si -bcos9 3 -d = 0 
a~in 02 - h~in93 - c = 0 

(4.15a) 

(4.15b) 

(4.18a) 

(4.1Rh) 

As was done in the fourbar linkage solution, isolate the 83 terms on one side, square 
both equations, and add them to eliminate 8:3. 

bcos83 =acos8 2 -d 

bsin8, = asin82 -c 

square: b 2 cos2 83 = (a cos 82 -d) 2 

b2 sin283-(asin82 -c} 2 

add: b sin 8,+cos•e, = acos82 -d + asin82 -c 2( 2 ,, ) ( )2 ( )z 

b2 = {acos92 -d}2 +(asin8 2 -c}2 

b2 = a2 cos2 82 -2adcos8 2 +d 2 +a 2sin2 Si -2acsin8 2 + c2 

b2 =a 2 (sin2 82 +cos2 92 )-2adcos8 2 -2acsin8z +c2 +d 2 

a2 -b 2 +c 2 +d 2 -2acsin9 2 -2adcos8 2 =0 

To simplify, create some constant parameters: 

lt:l 

then 
K1 = a2 -b 2 +c2 +d 2, K2 =-2ac, K3 = -2ad 

K1 +K 2 sin92 + K3 cos82 = 0 

(4.19) 

(4.20) 

As we did for the fourbar linkage, substitute the tangent half-angle identities (equa­
tion 4.9) for sin 82 and cos 82 to get the equation in terms of one trigonometric function. 

K1 +K 2( 
2

tan' ]+K 3[l-tan
2f ]=O 

I+ tan2 -1.. I+ tm2 ---1. 
2 2 

simplify (x, -K3)tan 2 ; +2K2 tan°; +(K, +K3) =0 

let 

Lht:11 

and (4.21) 

Once 82 is known for a gi.yen value of d, 8~ can be found from either equation 4.18a or 
4.18b. 

197 

195 



198 

• 

Kinematics of Machinery 

196 

• The crank-slider and 
slider-crank linkage 
both have two circuits or 
configurations in which 
they :an be independently 
assembled, sometimes 
called open and crossed. 
Because effective link 4 is 
always peipendicular to the 
slider axis, it is parallel to 
iu;t:U mi bod1 cin:uilll. This 
results in the two circuits 
being mirror images of one 
another, mirrored about a 

line throug~ the crank pivnt 
and perpendicular to the 
slide axi,. Thu,, the choice 
of value of slider position 
din the calculation of the 
slider-crank linkage deter­
mines which circuit is being 
analyz.ed. But, because of 
the change points at TDC 
11Dtl BDC, Lht: sliikr"'-'llWl 
has two branches on 
ench circuit, 11nd the two 
solutions obtained from 
f',quatinn 4. '.21 represent the 

two branches o:i. the ooe 
circuit bein~ analyzed, In 
contrast, the crank-slider 
has only one branch per 
circuit because when the 
crank is driven, it can make 
a full revolution and there 
are no change points to 
separate branches. See 
Section 4.13 (p. 208) for a 
more complete disCU8sion 
of cirouits artd branches in 
linkages, 
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Note that there are two solutiorus to equation 4.21 representing the two branches 
of lhe link.age un lhe circuit Lu which lhe given vulue of slider p08itiun d applies.~ The 
equation will fail when the backdriven slider-crank is at either top dead center (TDC) or 
bottom dead center (BDC). These are indetenninate change points between the branches 
at which the mathematics cannot predict which branch the linkage will go to next. A real 
slider-crank linkage can only make a full revolution of the crank if there is some stored 
energy in the crank to carry it through the dead centers twice per revolution. This is why 
you must spin a piston engine to stan it and why they typically have a flywheel attached to 
the crankshaft to provide the angular momentum needed to pass through IDC and BOC . 

hEXAMPLE A-3 

Position Anatysls of a Fourbar Slider-Crank Linkage with the Vector Loop Method 

Problem: Given a fourbar slider-crank linkage with the link lengths½ = a= 40 mm, LJ = b = 
120 mm, offse1 = c = -20 mm. Ford= 100 mm, find all pcmible values of 9:z and BJ 
on the circuit defined by the given value of d. 

Solution: See Figure 4-9 (p. 191) for nomenclature. 

l Find the TDC and BDC positions of the linkage. 

dBDC =b-a=l20-40= 80 mm 

dmc =b+a=l20+40=160mm 
(a) 

The requested position of d = l 00 mm is within the range of motion of the slider-crank linkage 
and is neither TDC nor BDC, so equations 4.20 and 4.21 can be used. 

2 Find the intermediate parameters needed from equations 4.20 and 421. 

K1 =a2-b 2 +c 2 +d 2 =40 2 -120 2 +(-20)2 +1002 =-2400 

K2 =-2ac =-2(40)(-20)=1600 

K3 =-2ad=-2(40)(100)=-8000 

A =K, -Kl =-2400-(-8000)=5600 

B-2K 2 - 2(1600)- 3200 

C =K1 + K3 =-24UU+(-8(J{J())=-10400 

3 Find the two values of 82 from equation 4.21. 

(h) 

_1(-B+ ~B2 -4AC) -l(-3200+.J3200 2-4(S600)(-10400)) 
821 =2tan ZA =2tan Z(S600) =95.798° 

(c) 

-i(-B- ~ln2 -4AC l _1[-3200-J3200 2 -4(s600)(-10400) l 
822 =2tan =2tan ( ) =-118.418° 

2A 2 5600 
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----- d = 100 mm ----►·, 

Fl&URI 4-12 

Solutbn to Example 4-3 

4 Find the two values of 9:3 from either equation 4.16a or 4.17. Calculate 83 with both equa­
tions for one value of 8:z and then use equation 4.16b with that result to determine which of 
the two equations gives the correct value of d to match the circuit of this linkage. Then use 
that equation with each of the 82 ,·alues to get the correct values of 93 for each branch of this 
circuit This example needs equation 4.17 for its ciicuit. 

9 _ . -I( asin~ 1 -c) _ . -l( 40sin(95.798°)-(-20)) _ 1501130 , -sm ---~- +1t-sm ---~-~~-~ +1t- . 
1 b UO 

(d) 

9 _ _1(asin82 1 -c) _ _1(40sin(-118.418°)-(-20)) _ 187 2670 
3• -COIi --~- +t:-cos --~--~~~ +ff- . 
• b 120 

5 The solution is shown in Figure 4-12. 

4.8 AN INVERTED CRANK-SLIDER POSITION SOLUTION 

Figure 4-13a* (p. 198) ~hows inversion #3 of the common fonrhar crank-slider linkage 
in which the sliding joint is between links 3 and 4 at point B. This is shown as an offset 
crank-slider mechanism. The slider block has pure rotation with its center offset from 
the slide axis. (Figure 2-13c, p. 52, shows the nonoffset version of this linkage in which 
the vector R.i is zero.) 

The gl.oml. coordinate system is again trucen with its origin at input crank pivot 02 and 
the positive X axis along link 1, the ground link. A local axis system has been placed at 
point B in order to define 93. Nore that there is a fixed angle y within link 4 which defines 
the slot angle with respect to that link. 

In Figure 4-13b (p. 19B), the links have been represented as position vectors having 
senses consistent with the coordinate systems that were chosen for convenience in de.fin­
ing the link angles. This particular arrangement of position vectors leads to the same 
vector loop equation as the previous crank-slider example. 
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X 

(b) 

Inversion #3 of the sllder-cr::m< fourbor linkage 

Equations 4.14 and 4.15 (pp. 192-193) apply to this inversion as well. Note that 
the absolute position of point B is defined by vector Ra which varies in both magnitude 
and direction as the linkage moves. We choose to represent Ra as the vector difference 
R2- R3 in order to usc the actual links as the position vectors in the loop equation 

All slider linkages will have at least one link whose effective length between joints 
will vary as the linkage moves. In this example the length of link 3 between points A and 
R, de.<,ignated ash, will change a~ it pa.<,ses through the slider hlock on link 4. Thus the 
value of b will be one of the variables to be solved for in this inversion. Another variable 
will be 04, the angle of link 4. Note however, that we also have an unknown in 83, the 
11ngleoflink 3. This is u total of three unknowns. Equations4.15 can only be solved for 
two unknowns. Thus we require flllother equation to solve the system. There is u fixed 
relationship between angles 03 and 94, shown as y in Figure 4-10 {p. 192), which gives 
the equation: 

83=84 +y 

Repeating equations 4.15 and renumbering them for the reader's convenience: 

acos9z -bws83 -cws84 -d = 0 

asin92 -bsin9 3 -csin9 4 =0 

(4.22) 

(4.23a) 

(4.23b) 

These have only two unknowns and can be solved simultaneously for 84 and b. Equa­
tion 4.23b can be solved for link length band substituted into equation 4.23a. 

b= asin8 2 -csin84 

sin83 

asin82 -csio.84 _ ms83 -ccos9 4 -d=O 
S1D83 

(4_24a) 

(4.24b) 
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Substitute equation 4.22 and after some algebraic manipulation, equation 4.24 can 
be reduced tu: 

where 

P=asin8 2 siny+(acos6 2 -d)cosy 

Q=-asin9z cosy+{acOJ62 -d)siny 

R=-csiny 

(4.25) 

Note that the factors P, Q, R are constant for any input value of[½. To solve this for 
84, itis convenient to substitute the tangent half angle identities (equation 4.9, p. 188) for 
the sin 84 and cos 84 tenns. This will result in a quadratic equation in tan (84 / 2) which 
can be solved for the two values of84-

2 mo( 9
24) l-tan2 ( O;) 

P--~~+Q--~~+R=O 
l+tan2(8;) l+tan2(8;) 

(4.26a) 

This reduces to: 

let 
S-R-Q, T-2P, U-Q+R 

(4.26b) 

and the solution is: 

8 =2arctan[-T± ✓T2-4SU l 
41,2 2S (4.26c) 

As was the case with the previous examples, this also has a crossed and an open 
solution represented by the plus Wld minus signs on the radical. Note thot we must lllso 
calculate the values of link length b for each 94 by using equation 4.24a. The coupler 
angle 83 is found from equation 4.22 (p. 197). 

4.9 LINKAGES OF MORE THAN FOUR BARS 

With some exceptions,• the same approach as shown here for the fourbar linkage can be 
used for any number of links in a closed-loop configuration. More complicated linkages 
may have multiple loops which will lead to more equations to be solved simultaneously 
W1d may require W1 iterative solution. Alternatively, WlllD.pler [10) presents a new, general, 
noniterative method for the analysis of planar mechanisms containing any number of rigid 
links connected by rotational and/or translational joints. 

199 

• Waldron and Sreeniva­
S211111 repon that the 
common solution methods 
for position analysis are not 
general, Le., = not clltcnd­
ablc ton-link mechanisms. 
Conventional position 
analysis methods. such as 
those used here. rely on the 
presence of a fourbar loop 
in the mechanism that can 
be solved fust, followed 
by a decompositi011 of 
the remaining links into 
a series of dyads. Not all 
mechanisms contain fourbar 
1001>5. (One eightbar, 
1-00F linkage contains 
no fourbar loops-see the 
16th i80lller at lowar right 
in Figure 2-lldonp. SO). 
Even if there is a fourbar 
loop. its pivots may not be 
grounded, requiring that the 
linkage be inverted to start 
the solution. Also, if die 
driving joint is not in the 
fourbar loop, then intapola­
lion is needed to solve for 
link positions. 
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The Geared Fivebar Linkage 

Another example, which can be reduced to two equations in two unknowns, is the geared 
fivebar linkage, which was introouccd in Section 2.14 (p. 62) and is shown in Figure 
4-14tt tlild program LINKAGES disk fik: F04-11.5br. The veclur loop fur lhis linbge is 
shown in Figure 4-14b. IL ubviuUl!ly has one mun:: pusilion vectur Llum Lhe fuurbar. Its 
vector loop equation is: 

(4.27a) 

Note that the vector senses are again chosen to suit the analyst's desires to have the 
vector angles defined at a convenient end of the respective link. Equation 4.27b substi­
tutes the complex polar notation for the position vectors in equation 4-2311, using a, b, c, 
d, f t.u represent lhe scillar lengths uf lhe links iiS iliuwn in Figure 4-14. 

(4.27b) 

Note also that tlilii vector loop equation has three unknown variables in it,namelythe 
angles of links 3, 4, ard 5. (The angle of link 2 is the input, or independent, variable, and 
link 1 is fixed with constant angle.) Since a two-dimensional vector equation can only be 
solved for two unknowns, we will need another equation to solve this system. Because 
this is a geared fivebar linkage, there exists a relationship between the two geared links, 
here links 2 and 5. 'Iwo factors detemrine how link 5 behaves with respect to link 2, 
namely, the gear ratio .).. and the phase angle cj). The relationship is: 

(4.27c) 

This tilluws us to express 85 in Lerrns uf 82 in equaliun 4.27b tlild n:d11cc lhe un­
knowns to two by substituting equation 4.27c into equation 4.27b. 

(4.28a) 

Note that the gear ratio A is the ratio of the diameters of the gears connecting the two 
links (A = ditJi I dia5 ), and the phase angle <I> is the initial angle of link 5 with respect 
to link 2. When link 2 is at zero degrees, link 5 is at the phase angle cp. Equation 4.27c 
defines the relationship between I½ and 85. Both A and <I> are design parameters selected 
by the design engineer along with the link lengths. With these parameters defined, the 
only unknowns left in equation 4.28 are 8J and 84. 

The behiiviur uf I.he gettred fivebw-linkage can be modified by changing the link 
lengths, the gear ratio, or the phase angle. The phase angle can be changed simply by 
lifting the gears out of engagement, rotating one gear with respect to the other, and re­
engaging them. Since links 2 and 5 are rigidly attached to gears 2 and 5, respectively, 
their relative angular rotations will be changed also. It is this fact that results in different 
positions of links 3 and 4 with any change in phase angle. The coupler curve's shapes 
will also change with variation in any of these parameters as can be seen in Figure 3-23 
(,p. 131) and in Appendix E. 

The procedure for solution of thill vector loop equation is the same as that used for 
the fourbar linkage: 



Design of Machinery: An Introduction to the Synthesis and .6.nalysis of Mechanisms and Machines, Fi~h Edition 

POSITION ANALYSIS 

n pr _____ . 

A C 

L._ Gear2 (a) (b) 

FIGURE 4-14 

lhe geared flvebar linkage and Its vector loop 

Suhstitnte the Ruler equivalent (equation 4.4a. p. 1 R5) into each tenn in the vector 
loop equation 4.28a. 

a{cos92 + jsin8 2 )+b{cos83 + jsin8 3)-c(cos9 4 + jsin8 4 ) 

-d[ cos{A82 +ci,)+ jsin(A82 +•)]- f(cos8 1 + jsin0 1) = 0 (4.28b) 

2 Separate the real and imaginary parts of the cartesian fonn of the vector loop equa­
tion. 

acos82 +bcos8 3 -ccos8 4 -dcos().8 2 +♦)- f cos81 = 0 

asin82 + bsin83 -csm8, -dsin{l8 2 +Ill)- /sin8 1 = O 

(4.28c) 

(4.28d) 

3 Rearrange to isolate one unknown (either 9J or 04) in each scalar equation. Note that 
81 is zero. 

bcos83 =-aoos82 +ccos84 +dcos(l82 +ii,)+ f 

bsin83 =-asin82 +csin84 +dsin(),82 + «ll) 

'1 Square both equations and add them to eliminate one unknown, say 83. 

b2 = 2c[ dcos(l8 2 + 1!1)-aoos82 + / ]cos9 4 

+2c[dsin{l8 2 +~)-asin8 2 ]sin84 

+c..2 +cl +d 2 + / 2 - 2a/00882 

-2d(acos8 2 -/)cos(A.02 +ct,) 
- 2adsin8 2 sin(A.92 +ct,) 

(4.28e) 

(4.28f) 

(4.28g) 

203 
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5 Substitute the tangent half-angle identities (equation 4.9, p. 188) foc the sine and 
c08ine umru, and manipulate the re:,ulting 1::4uation in lhe same way as was done for 
the fourbar linkage in order to solve for 84. 

A =le[ dcos(A.82 +ci,)-acos82 + f] 
B =2c[ dmi(l.9 2 +ct,)-11&in82] 

C =a2 -b 2 +c2 +d2 + J2 -2a/cos8 2 

- 2d(acos9 2 -f)oos(1.9 2 +ct,)-2adsin8 2 sin(l92 +♦) 

D=C-A, E=2B, F=A+C 

8 = 2 r-E±✓E2 -4DF l 
41,l arclm 2D 

6 Repeat steps 3 to 5 for the other unknown angle 83. 

G = 2b[ acos82 -dcos{A.82 +t)- f] 
H =lb[ asm8 2 -dsin(l9 2 +o)] 

K = a2 +b 2 -c 2 +d 2 + / 2 -2afcos9 2 

- 2d(acos8 2 - /)cos(A.82 +1p) 

- 2adsin0 2 sin(A.82 +♦) 

L=K-G; M=2H; N=G+K 

(4.28h) 

(4.28i) 

Note that these derivation steps are essentially identical to those for the pin-jointed 
fourbar linkage once 02 is substituted for 95 using equation 4.27c (p. 200). 

y 

FIGURE 4-15 

Watt's slxbar linkage and vector loop 
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Stephenson'sslxoa· llnkage and vector loops 

Sixbar Linkages 

W ATI'S SIXBAR is essentially two fourbar linkages in series, as shown inFlgure4-15a, 
and can be analyzed as such. Two vector loops are drawn as shown in Figure 4-15b. 
These vector loop equations can be solved in succession with the results of the first loop 
applied as input to the second loop. Note that there is a constant angular relationship 
between vectors ~ and R:'i within link 4. The solution for the fourbar linkage (equations 
4.10 and 4.13, pp. 188 and 189, respectively) is simply applied twice in this case. De­
pe.nding on the inversion of the Watt,; linlc:age being analY7.ed, there may he two four-link 
loops or one four-link and one five-link loop. (See Figure 2-14, p. 54.) In either case, if 
the four-link loop is analyzed first, there will not be more than two unknown link angles 
to be found at one time. 

STEPHENSON: s SIX.BAR is a more complicated mechanism to analyze. Two vector 
loops can be drawn, but depending on the imersion being analyzed, either one or both 
loops will have five links• and three unknown angles as shown in Figure 4- 13a and b (p. 
HIR). However, the two lc,np.<; wiJI have at least one nongronnd link in common and so a 
solution can be fmmd. In the other case.s an iterative solution such as a Newton-Raphson 
method (see Section 4.14, p. 210) must be used to find the roots of the equations. Program 
LINKAGES is limited to the inversions which allow a ciOBed-fonn solution, one of which 
is shown in Figure 4-16, and it docs not do the iterative solution. 

4.10 POSITION OF ANY POINT ON A LINKAGE 

Once the angles of all the links are found, it is simple and straightforward to define and 
calculate the po.c;ition of any point on any link for any input poRition of the linkage. Figure 
4-17 show1o a fourbar linkage whose coupler, link 3, is enlarged to contain a coupler point 
P. The crank and rocker have also been enlarged to show points S and U which might 
represent the centers of gravity of those links. We wwrt to develop algebraic expressions 
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for the positions of these (or any) points on the links. • See footnote on p. 199. 
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X 

FIGURE 4.1, 

Positions of points on the Inks 

To find the position of point S, draw a po.,;ilion vector from the fixe.d pivot02 to point 
S. This vector Rso2 makes an angle 6i with the vector RAo 2. This angle ~ is completely 
defined by the geometry of link 2 lllld is constwit The position vector for point Sis then: 

Rs(½= Rs= .!ei(l½-1½) =s[ cos(Oz +82)+ jsin(82 +82)] (4.29) 

The position of point U on link 4 is found in the same way, using the angle 64 which 
is a constant angular offset within the link. The expressicm is: 

(4.30) 

The position of point P on link 3 can be found from the addition of two position 
vectors RA and RPA· Vector RA is already defined from our analyi;is of the link angles i11 
equation 4.5 (p. 186). Vector RpA is the relative position of point P with respect to point 
A. Vector RpA is defined in the same way as Rs or Ru, using the internal link offset angle 
63 lllld the position Wlgle of link 3, 83. 

RpA = pei(e,+lig) = P[ cos(83 +83)+ jsin(83 +83)] (4.31a) 

(4.31b) 

Compare equation 4.31 b with equations 4.1 (p. 178). Equation 4.31 b is the position dif­
ference equation 

4.11 TRANSMISSION ANGLES 

The transmission angle was defined in Section 3.3 (p. 100) for a fourbar linkage. That 
defi11ition is repeated here for your convenience. 

The transmimon angleµ is shown in Figure 3-3a (p. 102) and is defined as the angle between 
the output link and the coupler. It is usually taken as the absolute value of the acute angle of the 
pair of angles at the intersection of the rwo links and varies continuously from some minimum to 
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some mwmum value as the linkage goes through its range of motion. It is a measure of the quality 
of force tnmsmission at the joint.• 

We will expand that definition here to represent the angle between any two links in a 
linkage, as a linkage can have many transmission angles. The angle between any output 
link and the coupler which drives it is a transmission angle. Now that we have developed 
the analytic ex:pres!illlllS for the angles of all the links in a mechanism, it is easy to define 
the transmission angle algebraically. It is merely the difference between the angles of the 
two joined links through which we wish to pass some force or velocity. For our fowbar 
linkage example it will be the difference between 83 1111d 94 . By convention we take the 
absolute value of the difference and force it to be an acute angle. 

if 

8iram =183-841 

1t 
a1ro ... >2 then µ=1t-811u,.. else µ=8,..,,.. (4.32) 

This computation can be done for any joint in a linkage by using the appropriate link 
angles. 

Extreme values of the Transmission Angle 

For a Grashof crank-rocker fourbar linkage the minimum value of the transmission angle 
will occur when the crank is colinear with the ground link as shown in Figure 4-18. The 
values of the transmission angle in these positions are easily calculated from the law 
of cosines since the linkage is then in a triangular configuration. The sides of the two 
triangles are link 3, link 4, and either the sum or difference of links 1 and 2. Depending 
on the linkage geometry, the minimum value of the transmission angle µmin will occur 
either when links 1 and 2 arc colinear and overlapping as shown in Figurc4-18a or when 
links 1 and 2 are colinear and rwnoverlapping as shown in Figure 4-18b. Using notation 
curu;istenl with St::elion 4.5 (p. 183) and Figure 4-7 (p. 194) we will labd the linkll: 

\ ~I ' ,/ ..._ _,, 
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+ The transmis5ion angle 
hllli limilt:(J applicill.im~ IL 
only prcdic15 the quality of 
foroe or IOl'qUe tnmsmis­

sion if the input and 
ouq,ut linkA are pi\'otal to 
ground. If the output force 
is taken from a floating 
link (coupler), then the 
transmission angle is of no 
value. A different index of 
merit called the joint force 
index (JFl) is presented in 
Cllapler 11 which discusses 
farce analysis in linkages. 
(See Section 11.12 p. 611.) 
The JFI is useful for situ­
ations in which the output 
link is floating as well 
as giving the ~ame kinrl 
of infonnation when the 
output is taken from a link 
rotating against the groom. 
However, the JF1 requires a 
complete force analysis of 
the linkage be done whereas 
the tmnsmission angle is 
determined from linkage 
geometry alone. 

0 

d------

(o) Overlapped (b) Extended 

FIGURE 4-18 

The minimum transmission angle In the Grashof crank-rocker lourbar linkage occurs In one of two positions 

GI 
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(a) Toggle positions for ll1ks b anj c 

FIGURE 4·19 

Non-Grashot trlple-rocker linkages In toggle 
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C 

[i;_-,;--- +; 

-a 
\ IC . ., 

v=0° 1 '-. µ 
b 1• 

I 

....... , 
I 

(b) Toggle postlons for links a and b 

a = link 2, b "'link 3, c "' link 4, d = link 1 

For the overlapping case (Figure 4-lSa, p. 202) the cosine law gives 

(4.33a) 

and for the extended case, the cosine law gives 

(4.33b) 

The minimum transmission angle µmin in a Grashof crank-rocker linkage is then the 
smaller of µI and µ2. 

For a Grashof double-rocker linkage the transmission angle can vary from O to 90 
degrees because the coupler can make a full revolution with respect to the other links. For 
a non-Grashof triple-rocker linkage the transmission angle V;ill be zero degrees in the 
toggle positions which occur when the output rocker c and the coupler b are colinear as 
shown in Figure 4-19a. In the other toggle positions when input rocker a and coupler bare 
colinear (Figure 4-19b), the transmission angle can be calculated from the cosine law as: 

when V=O, 

µ=im:cos [ (a+b) 2 +c 2 -d 2 l 
2c:(a+b) 

(4.34) 
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b 

A 

FIGURE 4-20 

~lndlng the crank a,gle cor·esoondlng to the toggle positions 

This is not the smallest value that the transmission angleµ can have in a triple-rocker, 
as thllt will obviously be zero. Of course, when 11I1W.yzing nny linkage, the lronsmission 
angles can easily oo computed and plotted for all positions using equation 4.32. Program 
LINKAGES does this. The student should mvestigate the variation in transmission llllgle for 
the example ~es in th08e programs. Disk file F04-15.4br i.:an be opened in prugnnn 
LL~KAGES to observe that linkage in motion. 

4.12 TOGGLE POSITIONS 

The input link angles which correspond to the toggle positions (stationary configurations) 
of the non-Grashof triple-rocker can be calculated by the following method, using 
trigonometry. Figure 4-20 shows a non-Grashof fourbar linkage in a general position. 
A construction line h has been drawn between points A and 04. This divides the qwtd­
rilateral loop into two mangles, 02A04 and AB04. Equation 4.35 uses the cosine law 
to express the transmission angle µ in tenns of link lengths and the input link angle 1½-

also: 

su: 

am.1: 

h2 =a2+d 2 -2adcos8 2 

h2 =b 2 +c2 -2bccosµ 

a2 +d 2 -2adcos8 2 =b2 +c2-2bccosµ 

b2 +c2 -a2 -d 2 ad cosµ= ------+-cos8 2 
2bc be 

(4.35) 

To find the maximum and minimum values of input angle (½, we can differentiate 
equation 4.35, form the derivative of 82 with respect to µ, and set it equal to zero. 

d82 = be sinµ =O 
dµ ad sin92 

(4.~) 

The link lengths a, b, c, d are never zero, so this expression can only be zero when 
sin µ is zero. This will be true when angleµ in Figure 4-20 is either zero or 180°. This 
is consistent with the definition of toggle given in Section 3.3 (p. 100). Ifµ is zero or 
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180° then cosµ will be ±1. Subiitituting these two values for cosµ .into equation 4.35 
will give a solution fur Lhe value of 82 between zero 11.Ild 180° which correspows tu the 
toggle position of a triple-rocker linkage when driven from one rocker. 

b2 +c2-a 2 -d 2 ad 
cosµ= 2bc + be cos92 = ±1 

or: 

(4.37) 

11.Ild: 

One of these ± cases will produce an argument for the arccosine function which lies 
between ±1 . The toggle angle which is in the first or secoJ1d quadrant can be fo11J1d from 
this value. The other toggle angle will then be the negative of l:he one found, due to the 
mirror symmetry of the two toggle positions about the ground link as shown in Figure 
4-16 (p. 203). Program LINKAGES computes the values of these toggle angles for any 
non-Grashof linkage. 

4.13 CIRCUITS AND BRANCHES IN LINKAGES 

In Section 4.5 (p. 183) it was noted that the fourbar linkage position problem has two 
solutiuru; which correspond tu the two circuits of the linkage. llis section will explure 
the topics of circuits and branches in linkages in greater detail. 

Chase and Mirthl21 define a circuit in a linkage as "all poisible orientations of the 
!inh that can be realized without disconnecting any of the joints'' and a branch as "a 
contimwus series of positions of the mechanism on a circuit between two stationary con­
.figurations . .. The stationary configurations divide a circuit inlo a series of branches." A 
linkage may have one or more circuits each of which may contain one or more branches. 
The numbt:r of drew.ts corresponds tu lhe number of sulutiuns possible frum lhe position 
equations for l:he linkage. 

Circuit defects are. fatal to linkage operation, but branch defects are not. A mecha­
nism that must change circuits to move from one desired position to the other (referred to 
as a circuit defect) is not useful as it cannot do so without disassembly and reassembly. 
A mechanism that changes branch when moving from one circuit to another (referred to 
as a branch defect) may or may not be usable depending on the designer's intent. 

The tailgate linkage shown in Figure 3-2 (p. 101) i,i; an example of a linkage with a 
deliherar.e branch defect in it,; range of motion (actually at the limit of its range of mo­
tion). The toggle position (stationary configuration) that it reaches with the tailgate fully 
open serves to hold it open. But the user can move it out of this stationary configuration 
by rotating one of the links out of toggle. Folding chairs nnd tables often use a similnr 
scheme as do fold-down scats in automobiles. 

Another example of a common linkage with a branch defect is the slider-crank link­
age ( crankshaft, connecting rod, and slider driving) used in every piston engine and shown 
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/~.- drcuit 2 

(a) Two drcutts of the 
tou•bar crank-·ocker 

(c) Two ::lrcuH's of the 
foorbar double-rocker 

FIGURE 4·21 

Clrcuts of the fourbar linkage 

effective 
link 4 

Cb) Two circuits of the 
fourbor double cronk 

(d) Two circuits o' tre 
fourbar slider 

effective 
link 4 

in Figure 13-3 (p. 663). This linkage has two toggle positions (top and bottom dead 
center) giving it two branches within one revolution of its crank. It works nevertheless 
because it is carried through these stationary c.onfigurations by the angular momentum of 
the rotating crank and its attached :flywheel. One penalty is that the engine must be spun 
to start it in order to build sufficient momentum to carry it through these toggle positions. 

The Watt sixbar linkage can have four circuits, and the Stephenson sixbar can have 
either four or six circuits depending on which link is driving. Eightbar linkages can have 
as many as 16 or 1 B circuits, not all of which may be real, however.121 

The number of circuits and branches in the fourbar linkage depends on its Grashof 
condition and the inversion used. A non-Grashof, triple-rocker fourbar linkage has only 
one circuit but has two branches. All Grashoffourbar linkages have two circuits, but the 
number of branches per circuit differs with the inversion. The crank-rocker and double­
crank have only one branch within each circuit. The double-rocker and rocker-crank have 
two branches within each circuit Table 4-1 summarizes these relationshipsJ21 Table 4-2 
shows the circuits and branches for the two configurations of the fourbar slider linkage. 
Figure 4-21 shows the circuit,; for the C'rra.,;hof fourhar linkage and the fourhar slider. 

Any solution for the position of a linkage must take into account the number of pos­
sible circuits that it contains. A closed-form solution, if available, will contain all the 
circuits. An iterative solution such as is described in the neict section will only yield the 
position data for one circuit, and it may not be the one you expect 
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TABLE 4·1 
Clrcuns 6 Branches 
In the Fourbar Unkage 

Fourbar Number Brancnes 
Unkoge of per 
fypa CiicuHs Circuit 

Non-
Grashot 

2 trtple-
rocker 

Grashot" 
crank- 2 
roeker 

Grashot" 
dalble- 2 
crank 

Grashot• 
dalble- 2 2 
roc,io.er 

Grmhot• 
rocker- 2 2 
crank 

Volid orly for non-speciol· 
caoe Graohof llnkag.,.. 

TABLE 4-2 
Circuits & Branches 
In the Fourbar Slider 

Fourbar Number lrancne1 
Slider of per 
fype CiicuHs Ciicuit 

Crank­
slider 

Slider­
crank 

2 

2 2 
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• Kramer fll states tha1 "In 
theory, any nonlinear alge­
braic syatem of equatiom can 
he manipu latnl into the fonn 
of a single p:>lynomial in one 
unknowr.. The roots of this 
polyr,omial can then be used 
to determine all unknowns in 
the system. However, if the 
derived polynomial is §realer 

than degree fom, f&."toring 
and/or some form of iteration 
are necessary to ob111in the 
roots, In gcncral, systems 
that have more lhllll II fourth 
degree polynomial usccialed 
with the elirninant of all but 
one variable must be solved 
by iteration. However, if 
factoring of the polynomial 
into terms of degree four or 
less is possible, all root! rmy 
be fmmd wi1b.out iteration. 
Therefore the only truly sym­
bolic solutions are those that 
cm be factored into ter:ns of 
fuurlh d~ or lais. This 
is the formal definition of a 
closed form solution." 

t Viete's method from "De 
Emendatione" by Francois 
V1ete (1615) as described in 
reference { 4]. 
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4.14 NEWTON-RAPHSON SOLUTION METHOD 

The :solution methods for position analysis shown so far in this chapter are all of "closed 
furm," meaning that lhey provide Lhe solution wilh a direct, noniterative apprU!lCh.* In 
some situations, particularly with multiloop mechanisms, a closed-form solution may not 
be attainable. Then an alternative approach is needed, and the Newton-Raphson method 
(sometimes just called Newton's method) provides one that can solve sets of simultane­
ous nonlinear equations. Any iterative solution method requires that one or more guess 
values be provided to start the computation. It then uses the guess values to obtain a new 
solution that may be closer to the correct one. This process is repeated until it converges 
to a solution clme enough to the correct one for practical purposes. However, there is no 
guarantee that an iterative method will converge at all. It may diverge, taking successive 
~olutions further from the correct one, especiaJly if the initial guess is not sufficiently 
close to the real solution. 

Though we will need to use the multidimensional (Newton-Raphson) version of 
Newton's method for these linkage problems, it is easier to understand how the algorithm 
works by first discussing the one-dimensional Newton method for finding the roots of a 
single nonlinear function in one independent variable. Then we will discuss the multidi­
mensional Newton-Raphson method. 

One-Dimensional Root-Finding (Newton's Method) 

A nonlinear function may have multiple roots, where u root is defined us the intersection 
of the function ""ith any straight line. Typically the zero axis of the independent variable 
is the suirlght line fur which we desire the ruols. 'Toke, fur elUUilple, a cubic pulynumiul 
which will have three roots, with either one or all three being real. 

y= f(x)=-x'-2x 2 +50x+OO (4.38) 

There is a closed-form solution for the roots of a cubic function t which allows us to 
calculate in advance that the roots of this particular cubic arc all real and arc x = -1 .562, 
-1.177, and 6.740. 

figure 4-22 shows this function plotted over a range of x. In Figure 4-22a, an initial 
guess value ofx1 = 1.8 is chosen. Newton's algorithm evaluates the function for this guess 
value, findingy 1. The value ofy 1 is compared to a user-selected tolerance (say O.CX>l) to 
see if it is close enough to zero to call x1 the root. If not, then the slope (m) of the function 
at.x1,y 1 is calculated either by using an analytic expression for the derivative of the func­
tion or by doing a numerical differentiation (less desirable). The equation of the tangent 
line is then evaluated to find it:s intercept at x2 which is used as a new gue:s:s value. The 
above pruces~ is repellled, .finding yz; le8ting il againsl lhe user selecwd Lulenwce; and, if 
it is too large, calculating another tangem line whose x intercept is used as a new guess 
value. This process is repeated until the value of the function Yi at the latest x; is close 
enough to zero to satisfy the user. 

The Newton algorithm described above Cllll be expressed nlgebroically (in pseudo­
codc) as sho\1in in equation 4.39. The funetionfor which the roots arc sought is/(x), and 
it:s derivativeis/(x). 111e :slope m of the tangent line i5 equal wf(x) at the current point 
Xi,Yi· 
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(a) A guess of x = 1.8 ccnverges to the root at x = -1. 177 (b) A guess of x = 2.5 converge~ to the root at x = -7 .562 

FIGURE 4·22 

'lewton-Raphson method of solution for roots of nonl near functions 

step 1 Yi = f (xi) 

step 2 IF Y; S tolerance 1HEN STOP 
step 3 m=f'(x 1) 

step 4 .t;+t = .x;- Yi 
m 

step 5 Yi+! = f(x1+1> 

step 6 IF Yi+t S tolerance 1HEN STOP 
El.SE xi = xi+l : Yi = Yi+1 : GOTO step 1 (4.39) 

If the initial guess value is close to a root, this algorithm will converge rapidly to the 
solution. However, itis quite sensitive to the initial guess value. Figure 4-22b shows the 
result of a slight change in the initial guess from x1 = 1.8 to x1 = 2.5. With this slightly 
different guess it converges to another root. Note also that if we choose an initial guess of 
x 1 = 3.579 which corresponds to a local maximum of this function, the tangent line will be 
hcnizontal and will not intersect the x axis at all. The method fails in this situation. Can 
you suggest a value of x1 that would cause it to converge to the root at x = 6.74? 

So this method has its drawbacks. It may fail to converge. It may behave chaoti­
cally.• It is sensitive to the guess value. It also is incapable of distinguishing between 
multiple circuits in a linkage. The circuit solution it finds is dependent on the initial guess. 
It requires that the function be differentiable, and the derivative as well as the function 
must be evaluated at every step. Nevertheless, it is the method of choice for functions 
whose derivatives can be efficiently evaluated and which are continuous in the region 
of the root Furthermore, it is about the only choice for systems of nonlinear equations. 

• Kramerl31 points Olli that 
''the Newton Raphson al­
gorithm can exhibit chaotic 
behavior when there are 
multiple solutions to kine• 
ma.tic consttain: equatiom . 
. . . 1'ewton Raphson has no 
mechanism for distinguish­
ing between the two solu­
tions" (circuifll). He does 
an experiment with just two 
links, exactly analogous to 
finding the angles of the 
coupler and rocker in lhe 
fourbar linkage position 
problem, and finds thal the 
iniLiul gues~ value~ nt:ed 
to be quite dose to the 
desired solution (one of the 
two pogsible ciicuils) to 
avoid div~ ID' chaotic 
oscillation between the two 
solutioru;. 
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Multidimensional Root-Finding (Newton-Raphson Method) 

The one-dimcnsional ~ewton method is easily extended to multiple, simultaneous, non­
linear equation sets and is then called the Ncwton-Raphson method. First, let's gcncra.lizc 
the expression developed fur lhe one-dimensiomtl cai;e in su:p 4 of eqWd.iun 4.39. Refe1 
ill.su to Figure 4-18 (p. 205). 

but: Y! =f(x.i) 

SU bstituting: 

or 

m=/'(Xj) 

m(xi+l -x; )=-J; 

.x;+1-Xj =~ 

(4.40) 

Here a Ar tenn is introduced which will approach 7.em as the solution converges. The Ar 
term rather than y; will be tested against a selected tolerance in this case. Note that this 
fonn of the equation avoids the division operation which is acceptable in a scalar equation 
but impossible with 11 matrix equ11tion. 

A multidimensional problem will have a set of equations of the form 

[
.ti (.ri,X2,X3, •••• Xm)] 

f2(X1,X2,X3, ••• ,Xn) 
. , =U . . . ' 

t.<x1,X2,X3, ••. , Xn) 

(4.41) 

where the sel uf eqlllllions u.mstilules a vector, here called B. 

Partial derivatives are required to obtain the slope terms 

oJi cif1 cif1 
ilx1 ilx2 ikn 

=A (4.42) 

dfn afn il/~ 
ax, ax2 ikn 

which form the Jacobian matrix of the system, here called A. 

The eJTUI Lerrns are also a vector, hen:: calbl X. 

[!:]-x (4.43) 

Equation 4.40 then becomes a matrix equation for the multidimensional case. 

AX=-8 (4.44) 

Equation 4.44 can be 5olved for X elther by matrix inversion or by GaU5sian elimination. 
The values uf the elemenls uf A and B are calculable fur any assumed (guess) values of 
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the variables. A criterion for convergence can be taken as the sum of the error vector X 
al each iterdtiun whe1e lhe sum approaches :reru al a rouL 

Let's set up this Newton-R.aphson solution for the fourbar linkage. 

Newton-Raphson Solution for the Fourbar Linkage 

The vector loop equation of the fowbar linkage, separated into its real and imaginary parts 
( equations 4.6a ancl 4.6b, p. 187) provides the set of functiom that define the two unknown 
link angles 03 and 94. The link lengths, a, b, c, d, and the inpuc ang]e 82 are given. 

The error vector is: 

/; =acos9 2 +bcos8:i-ccos8 4 -d=O 

12 = a sin 92 + bsin83 -csin84 = 0 

8 =[acos8 2 +bcos8 3 -ccos9 4 -dJ 
asin8 2 +bsin8 3 -csin8 4 

(4.45a) 

(4.45b) 

(4.46) 

(4.47) 

1bis matrix is known as the J~obian of the system, and, in addition to its usefulness 
in this solution method, it also tells something about the solvability of the system. The 
system of equations for position, velocity, and acceleration (in all of which the Jacobian 
appears) can only be rolvcd if the value of the determinant of the Jacobian is nonzero. 

Substituting equations 4.45b, 4.46, and 4.4 7 into equation 4.44 gives: 

To solve this matrix equation, guess values '\\ill have to be provided for 83 and 94 and 
the two equations then solved simultaneously for Li.93 and A94. For a larger system of 
equations, 11 matrix reduction algorithm will need to be used. For this simple system in 
two unknowns, the two equations can be solved by combination ancl reduction. The test 
dt:!iL"Iibetl abuve which 1:omptrres the swn of I.he values of .A83 tlrul A84 to a selected 1.Ulei­
ance must be applied after each iteration to determine if a root has been found. 

Equation Solvers 

Some commercially available equation solver software packages include the ability to 
do a Newton-Raphson iterative solution on sets of nonlinear simultaneous equations. 
TKSolver* and Mathcaat are examples. TKSolver automatically invokes its Newton-
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SyKtem11. 1220 Rock St_ 
Rockford. Il. 61101. USA. 
(800) 435-7887 

t PTC Inc .. 140 Kr.ndrick 
St. l\eedham, MA~94 
(781) 370-5000 
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TABLE P4·0 
Topic/Problem Matrix 

4.2 Position and Dls­
pJacamant 
4-53, 4-57 

4.5 Position Analysis ct 
Fourbar Llnlagas 

4-1,4-2,4-3,44,4-5 
Graphical 4-6 
Anc!yttcal 4-7, 4-1!, 
4-18d, 4-24, 4-35, 
4-39. 4-42, ,µIS, 4-48, 
4-51, 4-58, 4-59 

4.6 Fourbar Crcnk-Sllder 
Position Solution 
Grnphlc::al 4-9 

Analyttcal 4-10, 
4-18c. 4-18f, 
4-18h, 4-20 

4.7 Fourbor Slldar-Crank 
Position Solution 
Graphical 4-60 

Anclyttcal 4-61 

4.8 Inverted Crcn k-Slid • 
er Poslllcn Solution 
Graphical 4-11 
Anclyttcal 4-12, 
4-48 

4.1' Unkage, ol Mere 
than Four Bars 
Graphical GFB\.1 
4-16 
Analyttcal GH~M 
4-17 

Sixba 4-34, 4-36, 
4-37, 4-31;), ,µ10, 4-12, 
4-49, 4-Sl 

Eightbar 4-43, 4-4S 

-1.1 o P01ilion ol Any Point 
on a Linkage 

4-19, '1-22, 4-23, 4-46 

-1.11 Tranami11lon Anglea 

4-13, 4-14, 4-181!, 
4-1 Sc, 4-3S, 4-3 8, 4-U, 
4-44, 4-4'1, 4-50, 4-54 

-1.12 Toggle PoaltionI 

4-1 s, 4- !811, 4-18g, 
4-21, 4-25, 4-2~. 
4-27, 4-28, 4-29, 
4-,n.4-~.4-5~.4-5~ 

-1. 14 Newton.Qaphson 
Sclutlon Method 
4-31 . 4-32, 4-33 
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Raphson solver when it cannot directly solve the presented equation :set, provided that 
enough guess values h11ve been i.-upplied rur ~ unknowns. These equation solver Louis 
are quite convenient in that the user need only supply the equations for the system in 
"raw" form such as equation 4.45a . It is not necessary to arrange them into the Newton­
Raphson algorithm as shown in the previous section. Lacking such a commercial equa­
tion soh•er, you will have to write your own computer code to program the solution as 
described above. Reference [5] is a meful aid in this regard. The DVD included with 
this text contains example TKSolver files for the solution of this fourbar position problem 
as well as others . 
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4.16 PROBLEMS* 

4-1 A po1dLio11 veu.oris defim:tl Wi having a limglh i:qwtl Lo your heighl in in;ht:s (ur cen­
Limel.t:Is). Thi: Langt:nl of ils mgle is tk:fined as your weighl in pounds (ur k.ilogr&m) 
divitk:d by your age in yt:llrS. Cakulall: tlit: tlal.a fur lhil; veu.or antl: 

a. Draw the position vector to scale on cartesian axes. 
b. Write an expression for the position vector using unit vector notation. 
c. Write an expression for the position vector using complex number notation, in both 

polar and cartesian forms. 

4-2 A particle is traveling along an arc of 6.5-in radius. The arc center is at the origin of 
a coordinate system. ·when the particle is at position A, its position vector makes a 

t All problem figures are provided as PDF files, and some are also povided as animated AVI and Worting 
Model files; all are oo the DVD. PDF filenames are the same as the figure number. Run the file Animations. 
html to access and run the animations. 




