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Once a pos1tttill:., 1s done, the next step 1s to determtrte;- loc1t1es of all links 
and points of foterest-m the mechanism. We need to know the velocities in our mecha­
nism or machine, both to calculate the stored kinetic energy from m v2 /2, and also as a 
step on the way to the determination of the link's accelerations which are needed for the 
dynamic force calculations. Many methods and approaches exist to find velocities in 
mechanisms. We will examine only a few of these methods here. We will first develop 
manual graphical methods, which are often useful as a check on the more complete and 
accurate analytical solution. We will also investigate the properties of the instant center 
of velocity which can shed much light on a mechanism's velocity behavior with very lit­
tle effort. Finally, we will derive the analytical solution for the fourbar and inverted slid­
er-crank as examples of the general vector loop equation solution to velocity analysis 
problems. From these calculations we will be able to establish some indices of merit to 
judge our designs while they are still on the drawing board (or in the computer). 

6.1 DEFINITION OF VELOCITY 

Velocity is defined as the rate of change of position with respect to time. Position (R) is 
a vector quantity and so is velocity. Velocity can be angular or linear. Angular veloc­
ity will be denoted as co and linear velocity as V. 

d0 
co=-· 

dt' 
V=dR 

dt 
(6.1) 

Figure 6-1 shows a link PA in pure rotation, pivoted at point A in the xy plane. Its 
position is defined by the position vector RpA. We are interested in the velocity of point 

2,1 
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FIGURE 6-1 

pure rotation 

P when the link is subjected to an angular velocity co. If we represent the position vector 
RpA as a complex number in polar form, 

RPA = pei0 (6.2) 

where p is the scalar length of the vector. We can easily differentiate it to obtain: 

V = dRpA = pjeJe d0 = pwjeJe 
PA dt dt 

(6.3) 

Compare the right side of equation 6.3 to the right side of equation 6.2. Note that as 
a result of the differentiation, the velocity expression has been multiplied by the (con­
stant) complex operator j. This causes a rotation of this velocity vector through 90 de­
grees with respect to the original position vector. (See also Figure 4-5b, p. 152.) This 
90-degree rotation is positive, or counterclockwise. However, the velocity expression is 
also multiplied by co, which may be either positive or negative. As a result, the velocity 
vector will be rotated 90 degrees from the angle 0 of the position vector in a direction 
dictated by the sign of co. This is just mathematical verification of what you already 
knew, namely that velocity is always in a direction perpendicular to the radius of rota­
tion and is tangent to the path of motion as shown in Figure 6-1. 

Substituting the Euler identity (equation 4.4a, p. 155) into equation 6.3 gives us the 
real and imaginary (or x and y) components of the velocity vector. 

V PA = pwj( cos0 + jsin0) = pro(-sin0 + j cos0) (6.4) 

Note that the sine and cosine terms have swapped positions between the real and 
imaginary terms, due to multiplying by the j coefficient. This is evidence of the 90 de­
gree rotation of the velocity vector versus the position vector. The former x component 
has become the y component, and the former y component has become a minus x com­
ponent. Study Figure 4-5b (p. 152) to review why this is so. 

The velocity V PA in Figure 6-1 can be referred to as an absolute velocity since it is 
referenced to A, which is the origin of the global coordinate axes in that system. As such, 
we could have referred to it as V p, with the absence of the second subscript implying 
reference to the global coordinate system. Figure 6-2a shows a different and slightly 
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Velocity difference 

more complicated system in which the pivot A is no longer stationary. It has a known 
linear velocity VA as part of the translating carriage, link 3. If w is unchanged, the veloc­
ity of point P versus A will be the same as before, but V PA can no longer be considered 
an absolute velocity. It is now a velocity difference and must carry the second subscript 
as V PA. The absolute velocity V p must now be found from the velocity difference equa­
tion whose graphical solution is shown in Figure 6-2b: 

(6.5a) 

rearranging : 

Vp =VA +VpA (6.5b) 

Note the similarity of equation 6.5 to the position difference equation 4.1 (p. 147). 

Figure 6-3 shows two independent bodies P and A, which could be two automobiles, 
moving in the same plane. If their independent velocities V p and VA are known, their rel­
ative velocity V PA can be found from equation 6.5 arranged algebraically as: 

(6.6) 

The graphical solution to this equation is shown in Figure 6-3b. Note that it is sim­
ilar to Figure 6-2b except for a different vector being the resultant. 

As we did for position analysis, we give these two cases different names despite the 
fact that the same equation applies. Repeating the definition from Section 4.2 (p. 147), 
modified to refer to velocity: 

CASE 1: Two points in the same body => velocity difference 

CASE 2: Two points in different bodies => relative velocity 

We will find use for this semantic distinction both when we analyze linkage velocities 
and the velocity of slip later in this chapter. 

(b) 
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6.2 GRAPHICAL VELOCITY ANALYSIS 

Before programmable calculators and computers became universally available to engi­
neers, graphical methods were the only practical way to solve these velocity analysis 
problems. With some practice and with proper tools such as a drafting machine or CAD 
package, one can fairly rapidly solve for the velocities of particular points in a mecha­
nism for any one input position by drawing vector diagrams. However, it is a tedious 
process if velocities for many positions of the mechanism are to be found, because each 
new position requires a completely new set of vector diagrams be drawn. Very little of 
the work done to solve for the velocities at position 1 carries over to position 2, etc. 
Nevertheless, this method still has more than historical value as it can provide a quick 
check on the results from a computer program solution. Such a check needs only be done 
for a few positions to prove the validity of the program. Also, graphical solutions pro­
vide the beginning student some visual feedback on the solution which can help develop 
an understanding of the underlying principles. It is principally for this last reason that 
graphical solutions are included in this text even in this "age of the computer." 

To solve any velocity analysis problem graphically, we need only two equations, 6.5 
and 6.7 (which is merely the scalar form of equation 6.3): 

IVl=v=rm (6.7) 

Note that the scalar equation 6.7 defines only the magnitude (v) of the velocity of 
any point on a body which is in pure rotation. In a graphical CASE 1 analysis, the direc­
tion of the vector due to the rotation component must be understood from equation 6.3 
to be perpendicular to the radius of rotation. Thus, if the center of rotation is known, the 
direction of the velocity component due to that rotation is known and its sense will be 
consistent with the angular velocity ffi of the body. 
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FIGURE 6-4 

Graphical solution for velocities in a pin-jointed linkage 

Figure 6-4 shows a fourbar linkage in a particular position. We wish to solve for the 
angular velocities of links 3 and 4 ( 003, 004) and the linear velocities of points A, B, and C 
(VA, V 8 , V c). Point C represents any general point of interest. Perhaps C is a coupler 
point. The solution method is valid for any point on any link. To solve this problem we 
need to know the lengths of all the links, the angular positions of all the links, and the 
instantaneous input velocity of any one driving link or driving point. Assuming we have 
designed this linkage, we will know or can measure the link lengths. We must also first 
do a complete position analysis to find the link angles 03 and 04 given the input link's 
position 02. This can be done by any of the methods in Chapter 4. In general we must 
solve these problems in stages, first for link positions, then for velocities, and finally for 
accelerations. For the following example, we will assume that a complete position anal­
ysis has been done and that the input is to link 2 with known 02 and 002 for this one 
"freeze frame" position of the moving linkage. 



We will use point A as the reference point to find VB because A is in the same link as Band
we have already solved for VA- Any vector equation can be solved for two unknowns. Each
term has two parameters, namely magnitude and direction. There are then potentially six un-
knowns in this equation, two per term. We must know four of them to solve it. We know
both magnitude and direction of VA and the direction of VB' We need to know one more
parameter.

S The term VBA represents the velocity of B with respect to A. If we assume that the link BA is
rigid, then there can be no component of VBA which is directed along the line BA, because
point B cannot move toward or away from point A without shrinking or stretching the rigid
link! Therefore, the direction of VBA must be perpendicular to the line BA. Draw construc-
tion line qq through point B and perpendicular to BA to represent the direction of VBA, as
shown in Figure 6-4a.

6 Now the vector equation can be solved graphically by drawing a vector diagram as shown in
Figure 6-4b. Either drafting tools or a CAD package is necessary for this step. First draw
velocity vector VA carefully to some scale, maintaining its direction. (It is drawn twice size
in the figure.) The equation in step 4 says to add VBA to VA, so draw a line parallel to line qq
across the tip of VA' The resultant, or left side of the equation, must close the vector dia-
gram, from the tail of the first vector drawn (VA) to the tip of the last, so draw a line parallel
to pp across the tail of VA' The intersection of these lines parallel to pp and qq defines the
lengths of VB and VBA. The senses of the vectors are determined from reference to the equa-
tion. VA was added to VBA, so they must be arranged tip to tail. VB is the resultant, so it must
be from the tail of the first to the tip of the last. The resultant vectors are shown in Figure
6-4b and d.
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~EXAMPLE 6-1 

Graphical Velocity Analysis for One Position of Linkage. 

Problem: 

Solution: 

Given 82, 83, 84, CO2, find C03, co4, VA, VB, V c by graphical methods. 

(see Figure 6-4, p. 245) 

Start at the end of the linkage about which you have the most information. Calculate the 
magnitude of the velocity of point A using scalar equation 6. 7. 

(a) 

2 Draw the velocity vector VA with its length equal to its magnitude v A at some convenient scale 
with its root at point A and its direction perpendicular to the radius AO2. Its sense is the same 
as that of co2 as shown in Figure 6-4a. 

3 Move next to a point about which you have some information. Note that the direction of the 
velocity of point B is predictable since it is pivoting in pure rotation about point 0 4. Draw 
the construction line pp through point B perpendicular to B0 4, to represent the direction of 
VB as shown in Figure 6-4a. 

4 Write the velocity difference vector equation 6.5 for point B versus point A. 

(b) 



VELOCITY ANALYSIS 

7 The angular velocities of links 3 and 4 can be calculated from equation 6.7: 

and (c) 

Note that the velocity difference term V BA represents the rotational component of velocity of 
link 3 due to ffi3. This must be true if point B cannot move toward or away from point A. 
The only velocity difference they can have, one to the other, is due to rotation of the line con­
necting them. You may think of point Bon the line BA rotating about point A as a center, or 
point A on the line AB rotating about B as a center. The rotational velocity m of any body is 
a "free vector" which has no particular point of application to the body. It exists everywhere 
on the body. 

8 Finally we can solve for V c, again using equation 6.5. We select any point in link 3 for which 
we know the absolute velocity to use as the reference, such as point A. 

(d) 

In this case, we can calculate the magnitude of V CA from equation 6.7 as we have already 
found ffi3, 

(e) 

Since both VA and V CA are known, the vector diagram can be directly drawn as shown in Fig­
ure 6-4c. V c is the resultant which closes the vector diagram. Figure 6-4d shows the calcu­
lated velocity vectors on the linkage diagram. Note that the velocity difference vector V CA 
is perpendicular to line CA (along line rr) for the same reasons as discussed in step 7 above. 

The above example contains some interesting and significant principles which de­
serve further emphasis. Equation 6.5a is repeated here for discussion. 

(6.5a) 

This equation represents the absolute velocity of some general point P referenced to the 
origin of the global coordinate system. The right side defines it as the sum of the abso­
lute velocity of some other reference point A in the same system and the velocity differ­
ence (or relative velocity) of point P versus point A. This equation could also be written: 

Velocity = translation component + rotation component 

These are the same two components of motion defined by Chasles' theorem, and 
introduced for displacement in Section 4.3 (p. 149). Chasles' theorem holds for velocity 
as well. These two components of motion, translation, and rotation, are independent of 
one another. If either is zero in a particular example, the complex motion will reduce to 
one of the special cases of pure translation or pure rotation. When both are present, the 
total velocity is merely their vector sum. 

Let us review what was done in Example 6-1 in order to extract the general strategy 
for solution of this class of problem. We started at the input side of the mechanism, as 
that is where the driving angular velocity is defined. We first looked for a point (A) for 



which the motion was pure rotation so that one of the terms in equation 6.5 (p. 243)
would be zero. (We could as easily have looked for a point in pure translation to boot-
strap the solution.) We then solved for the absolute velocity of that point (VA) using
equations 6.5 and 6.7 (p. 244). (Steps I and 2)

We then used the point (A) just solved for as a reference point to define the transla-
tion component in equation 6.5 written for a new point (B). Note that we needed to
choose a second point (B) which was in the same rigid body as the reference point (A)
which we had already solved and about which we could predict some aspect of the new
point's (B's) velocity. In this example, we knew the direction of the velocity VB. In
general this condition will be satisfied by any point on a link which is jointed to ground
(as is link 4). In this example, we could not have solved for point C until we solved for
B, because point C is on a floating link for which point we do not yet know the velocity
direction. (Steps 3 and 4)

To solve the equation for the second point (B), we also needed to recognize that the
rotation component of velocity is directed perpendicular to the line connecting the two
points in the link (B and A in the example). You will always know the direction of the
rotation component in equation 6.5 if it represents a velocity difference (CASE 1) sit-
uation. If the rotation component relates two points in the same rigid body, then that
velocity difference component is always perpendicular to the line connecting those two
points (see Figure 6-2, p. 243). This will be true regardless of the two points selected.
But, this is not true in a CASE 2 situation (see Figure 6-3, p. 244). (Steps 5 and 6)

Once we found the absolute velocity (VB) of a second point on the same link (CASE
1) we could solve for the angular velocity of that link. (Note that points A and Bare
both on link 3 and the velocity of point 04 is zero.) Once the angular velocities of all the
links were known, we could solve for the linear velocity of any point (such as C) in any
link using equation 6.5. To do so, we had to understand the concept of angular velocity
as a free vector, meaning that it exists everywhere on the link at any given instant. It
has no particular center. It has an infinity of potential centers. The link simply has an
angular velocity, just as does a frisbee thrown and spun across the lawn.

All points on afrisbee, if spinning while flying, obey equation 6.5. Left to its own
devices, the frisbee will spin about its center of gravity (CG), which is close to the center
of its circular shape. But if you are an expert frisbee player (and have rather pointed fin-
gers), you can imagine catching that flying frisbee between your two index fingers in
some off-center location (not at the CG), such that the frisbee continues to spin about
your fingertips. In this somewhat far-fetched example of championship frisbee play, you
will have taken the translation component of the frisbee's motion to zero, but its inde-
pendent rotation component will still be present. Moreover, it will now be spinning about
a different center (your fingers) than it was in flight (its CG). Thus this free vector of
angular velocity «(0) is happy to attach itself to any point on the body. The body still has
the same 00, regardless of the assumed center of rotation. It is this property that allows
us to solve equation 6.5 for literally any point on a rigid body in complex motion refer-
enced to any other point on that body. (Steps 7 and 8).

DESIGN OF MACHINERY CHAPTER 6 



From equation 6.8b we can see that a fourbar linkage has 6 instant centers, a sixbar
has 15, and an eightbar has 28.

Figure 6-5 shows a fourbar linkage in an arbitrary position. It also shows a linear
graph * which is useful for keeping track of which lCs have been found. This particular
graph can be created by drawing a circle on which we mark off as many points as there
are links in our assembly. We will then draw a line between the dots representing the
link pairs each time we find an instant center. The resulting linear graph is the set of lines
connecting the dots. It does not include the circle which was used only to place the dots.
This graph is actually a geometric solution to equation 6.8b, since connecting all the
points in pairs gives all the possible combinations of points taken two at a time.

Some lCs can be found by inspection, using only the definition of the instant center.
Note in Figure 6-5a that the four pin joints each satisfy the definition. They clearly must
have the same velocity in both links at all times. These have been labeled h,2, h,3, h,4,
and h,4' The order of the subscripts is immaterial. Instant center h,l is the same as h,2.
These pin joint lCs are sometimes called "permanent" instant centers as they remain in
the same location for all positions of the linkage. In general, instant centers will move to
new locations as the linkage changes position, thus the adjective instant. In this fourbar
example there are two more lCs to be found. It will help to use the Aronhold-Kennedy
theorem,t also called Kennedy's rule, to locate them.

Kennedy's rule:
Any three bodies in plane motion will have exactly three instant centers, and they will lie
on the same straight line.

The first part of this rule is just a restatement of equation 6.8b for n = 3. It is the
second clause in this rule that is most useful. Note that this rule does not require that the
three bodies be connected in any way. We can use this rule, in conjunction with the lin-
ear graph, to find the remaining lCs which are not obvious from inspection. Figure 6.5b
shows the construction necessary to find instant center 11,3. Figure 6-5c shows the con-
struction necessary to find instant center h,4' The following example describes the pro-
cedure in detail.

VELOCITY ANALYSIS 

6.3 INSTANT CENTERS OF VELOCITY 

The definition of an instant center of velocity is a point, common to two bodies in plane 
motion, which point has the same instantaneous velocity in each body. Instant centers 
are sometimes also called centros or poles. Since it takes two bodies or links to create 
an instant center (IC), we can easily predict the quantity of instant centers to expect from 
any collection of links. The combination formula for n things taken rat a time is: 

C = _n(_n_-_1 )~( n_-_2_)·_· • (_n_-_r _+_I) 
r! 

For our case r = 2 and it reduces to: 

(6.8a) 

(6.8b) 

• Note that this graph is not 
a plot of points on an x, y 
coordinate system. Rather 
it is a linear graph from the 
fascinating branch of 
mathematics called graph 
theory, which is itself a 
branch of topology. Linear 
graphs are often used to 
depict interrelationships 
between various phenome­
na. They have many 
applications in kinematics 
especially as a way to 
classify linkages and to 
find isomers. 

t Discovered independent­
ly by Aronhold in 
Germany, in 1872, and by 
Kennedy in England, in 
1886. 



The presence of slider joints makes finding the instant centers a little more subtle as
is shown in the next example. Figure 6-6a shows a fourbar slider-crank linkage. Note
that there are only three pin joints in this linkage. All pin joints are permanent instant
centers. But the joint between links I and 4 is a rectilinear, sliding full joint. A sliding
joint is kinematically equivalent to an infinitely long link, "pivoted" at infinity. Figure
6-6b shows a nearly equivalent pin-jointed version of the slider-crank in which link 4 is
a very long rocker. Point B now swings through a shallow arc which is nearly a straight
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Finding All Instant Centers for a Fourbar Linkage. 

Problem: Given a fourbar linkage in one position, find all /Cs by graphical methods. 

Solution: (see Figure 6-5) 

Draw a circle with all links numbered around the circumference as shown in Figure 6-5a. 

2 Locate as many /Cs as possible by inspection. All pin joints will be permanent /Cs. Con­
nect the link numbers on the circle to create a linear graph and record those /Cs found, as 
shown in Figure 6-5a. 

3 Identify a link combination on the linear graph for which the IC has not been found, and draw 
a dotted line connecting those two link numbers. Identify two triangles on the graph which 
each contain the dotted line and whose other two sides are solid lines representing /Cs al­
ready found. On the graph in Figure 6-5b, link numbers 1 and 3 have been connected with a 
dotted line. This line forms one triangle with sides 13, 34, 14 and another with sides 13, 23, 
12. These triangles define trios of /Cs which obey Kennedy's rule. Thus /Cs 13, 34, and 14 
must lie on the same straight line. Also /Cs 13, 23 and 12 will lie on a different straight 
line. 

4 On the linkage diagram draw a line through the two known /Cs which form a trio with the 
unknown IC. Repeat for the other trio. In Figure 6-5b, a line has been drawn through 11,2 

and /2,3 and extended. /i,3 must lie on this line. Another line has been drawn through 11,4 

and /3,4 and extended to intersect the first line. By Kennedy's rule, instant center 11,3 must 
also lie on this line, so their intersection is /i,3· 

5 Connect link numbers 2 and 4 with a dotted line on the linear graph as shown in Figure 6-5c. 
This line forms one triangle with sides 24, 23, 34 and another with sides 24, 12, 14. These 
sides represent trios of /Cs which obey Kennedy's rule. Thus /Cs 24, 23, and 34 must lie on 
the same straight line. Also /Cs 24, 12, and 14 lie on a different straight line. 

6 On the linkage diagram draw a line through the two known /Cs which form a trio with the 
unknown IC. Repeat for the other trio. In Figure 6-5c, a line has been drawn through 11,2 
and /1,4 and extended. h,4 must lie on this line. Another line has been drawn through 12,3 
and /3,4 and extended to intersect the first line. By Kennedy's rule, instant center / 2.4 must 
also lie on this line, so their intersection is /2,4 . 

7 If there were more links, this procedure would be repeated until all /Cs were found. 



line. It is clear in Figure 6-6b that, in this linkage, h,4 is at pivot 04. Now imagine in-
creasing the length of this long, link 4 rocker even more. In the limit, link 4 approaches
infinite length, the pivot 04 approaches infinity along the line which was originally the
long rocker, and the arc motion of point B approaches a straight line. Thus, a slider joint
will have its instant center at infinity along a line perpendicular to the direction of slid-
ing as shown in Figure 6-6a.
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Locating instant centers in the pin-jointed linkage 
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(a) Slider-crank linkage (b) Crank-rocker linkage 

A rectilinear slider's instant center is at infinity 

.6EXAMPLE 6-3 

Finding All Instant Centers for a Slider-Crank Linkage. 

Problem: 

Solution: 

Given a slider-crank linkage in one position, find all !Cs by graphical methods. 

(see Figure 6-7) 

Draw a circle with all links numbered around the circumference as shown in Figure 6-7a. 

2 Locate all !Cs possible by inspection. All pin joints will be permanent !Cs. The slider joint's 
instant center will be at infinity along a line perpendicular to the axis of sliding. Connect the 
link numbers on the circle to create a linear graph and record those !Cs found, as shown in 
Figure 6-7a. 

3 Identify a link combination on the linear graph for which the IC has not been found, and draw 
a dotted line connecting those two link numbers. Identify two triangles on the graph which 
each contain the dotted line and whose other two sides are solid lines representing !Cs al­
ready found. In the graph on Figure 6-7b, link numbers 1 and 3 have been connected with a 
dotted line. This line forms one triangle with sides 13, 34, 14 and another with sides 13, 23, 
12. These sides represent trios of !Cs which obey Kennedy's rule. Thus !Cs 13, 34, and 14 
must lie on the same straight line. Also !Cs 13, 23, and 12 lie on a different straight line. 

4 On the linkage diagram draw a line through the two known !Cs which form a trio with the 
unknown IC. Repeat for the other trio. In Figure 6-7b, a line has been drawn from 11,2 

through lz,3 and extended. 11,3 must lie on this line. Another line has been drawn from li,4 
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Locating instant centers in the slider-crank linkage 
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(at infinity) through 13,4 and extended to intersect the first line. By Kennedy's rule, instant 
center J 1,3 must also lie on this line, so their intersection is J 1,3. 

5 Connect link numbers 2 and 4 with a dotted line on the graph as shown in Figure 6-7c. This 
line forms one triangle with sides 24, 23, 34 and another with sides 24, 12, 14. These sides 
also represent trios of !Cs which obey Kennedy's rule. Thus ICs 24, 23, and 34 must lie on 
the same straight line. Also !Cs 24, 12, and 14 lie on a different straight line. 

X 
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6 On the linkage diagram draw a line through the two known /Cs which form a trio with the 
unknown IC. Repeat for the other trio. In Figure 6-7c, a line has been drawn from 11,2 to 
intersect / 1,4, and extended. Note that the only way to "intersect"/ l.4 at infinity is to draw a 
line parallel to the line /3,4 !1.4 since all parallel lines intersect at infinity. Instant center lz.4 
must lie on this parallel line. Another line has been drawn through /2,3 and 13,4 and extended 
to intersect the first line. By Kennedy's rule, instant center 12,4 must also lie on this line, so 
their intersection is fi.4. 

7 If there were more links, this procedure would be repeated until all /Cs were found. 

The procedure in this slider example is identical to that used in the pin-jointed fourbar, 
except that it is complicated by the presence of instant centers located at infinity. 

In Section 2.9 and Figure 2-IOc (p. 41) we showed that a cam-follower mechanism 
is really a fourbar linkage in disguise. As such it will also possess instant centers. The 
presence of the half joint in this, or any linkage, makes the location of the instant centers 
a little more complicated. We have to recognize that the instant center between any two 
links will be along a line that is perpendicular to the relative velocity vector between the 
links at the half joint, as shown in the following example. Figure 6-8 shows the same 
cam-follower mechanism as in Figure 2-14 (p. 45). The effective links 2, 3, and 4 are 
also shown. 

~EXAMPLE 6-4 

Finding All Instant Centers for a Cam-Follower Mechanism. 

Problem: 

Solution: 

Given a cam and follower in one position, find all /Cs by graphical methods. 

(see Figure 6-8) 

Draw a circle with all links numbered around the circumference as shown in Figure 6-8b. In 
this case there are only three links and thus only three /Cs to be found as shown by equation 
6.8. Note that the links are numbered 1, 2, and 4. The missing link 3 is the variable-length 
effective coupler. 

2 Locate all /Cs possible by inspection. All pin joints will be permanent /Cs. The two fixed 
pivots /i,2 and / 1,4 are the only pin joints here. Connect the link numbers on the circle to 
create a linear graph and record those /Cs found, as shown in Figure 6-8b. The only link 
combination on the linear graph for which the IC has not been found is 12,4, so draw a dotted 
line connecting those two link numbers. 

3 Kennedy's rule says that all three /Cs must lie on the same straight line; thus the remaining 
instant center h,4 must lie on the line 11,2 11.4 extended. Unfortunately in this example, we 
have too few links to find a second line on which /2, 4 must lie. 

4 On the linkage diagram draw a line through the two known /Cs which form a trio with the 
unknown /C. In Figure 6-8c, a line has been drawn from /1.2 through 11,4 and extended. 
This is, of course, link 1. By Kennedy's rule, 12,4 must lie on this line. 
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Effective link 3 

Effective link 2 
Effective link 4 

(b) The linkage graph (c) The instantaneously equivalent "effective linkage" 

Half joint 

Common tangent 
(axis of slip) 

2 

Common normal 
(axis of transmission) 

(a) The cam and follower (d) Finding /2,4 without using the effective linkage 

FIGURE 6-8 
W""ftftb ewm .., w,~a, rmwr:r i£iiiiiiiWWWW\iii.M··btlldll ;..;;w liiM II A 
Locating instant centers in the cam-follower mechanism 

5 Looking at Figure 6-8c which shows the effective links of the equivalent fourbar linkage for 
this position, we can extend effective link 3 until it intersects link 1 extended. Just as in the 
"pure" fourbar linkage, instant center 2,4 lies on the intersection of links I and 3 extended 
(see Example 6-2, p. 250), 

6 Figure 6-8d shows that it is not necessary to construct the effective fourbar linkage to find 
fi.4- Note that the common tangent to links 2 and 4 at their contact point (the half joint) 
has been drawn. This line is also called the axis of slip because it is the line along which all 
relative (slip) velocity will occur between the two links. Thus the velocity of link 4 versus 
2, V 42, is directed along the axis of slip. Instant center !z,4 must therefore lie along a line 
perpendicular to the common tangent, called the common normal. Note that this line is the 
same as the effective link 3 line in Figure 6-8c. 

wt 111 
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6.4 VELOCITY ANALYSIS WITH INSTANT CENTERS 

Once the /Cs have been found, they can be used to do a very rapid graphical velocity 
analysis of the linkage. Note that, depending on the particular position of the linkage 
being analyzed, some of the /Cs may be very far removed from the links. For example, 
if links 2 and 4 are nearly parallel, their extended lines will intersect at a point far away 
and not be practically available for velocity analysis. Figure 6-9 shows the same link­
age as Figure 6-5 (p. 251) with 11,3 located and labeled. From the definition of the in­
stant center, both links sharing the instant center will have identical velocity at that point. 
Instant center li,3 involves the coupler (link 3) which is in complex motion, and the 
ground link 1, which is stationary. All points on link I have zero velocity in the global 
coordinate system, which is embedded in link 1. Therefore, 11,3 must have zero velocity 
at this instant. If/ 1 ,3 has zero velocity, then it can be considered to be an instantaneous 
"fixed pivot" about which link 3 is in pure rotation with respect to link l. A moment 
later, 11,3 will move to a new location and link 3 will be "pivoting" about a new instant 
center. 

The velocity of point A is shown on Figure 6-9. The magnitude of VA can be com­
puted from equation 6.7 (p. 244). Its direction and sense can be determined by inspec­
tion as was done in Example 6-1 (p. 246). Note that point A is also instant center h,3· It 
has the same velocity as part of link 2 and as part of link 3. Since link 3 is effectively 
pivoting about l1,3 at this instant, the angular velocity m3 can be found by rearranging 
equation 6.7: 

Once w3 is known, the magnitude of V 8 can also be found from equation 6.7: 

v8 =(Bl1.3)ro3 

Once V 8 is known, w4 can also be found from equation 6.7: 

(6.9a) 

(6.9b) 

(6.9c) 

Finally, the magnitude of V c (or the velocity of any other point on the coupler) can be 
found from equation 6.7: 

(6.9d) 

Note that equations 6.7 and 6.9 provide only the scalar magnitude of these veloc­
ity vectors. We have to determine their direction from the information in the scale dia­
gram (Figure 6-9). Since we know the location of/ 1,3, which is an instantaneous "fixed" 
pivot for link 3, all of that link's absolute velocity vectors for this instant will be per­
pendicular to their radii from I 1,3 to the point in question. VB and V c can be seen to 
be perpendicular to their radii from lt,3· Note that V 8 is also perpendicular to the radius 
from 04 because Bis also pivoting about that point as part of link 4. 

A rapid graphical solution to equations 6.9 is shown in the figure. Arcs centered at 
11,3 are swung from points Band C to intersect line A/1,3. The magnitudes of velocities 



VELOCITY ANALYSIS 

FIGURE 6-9 

Velocity analysis using instant centers 

VB' and V C' are found from the vectors drawn perpendicular to that line at the intersec­
tions of the arcs and line A/1,3. The lengths of the vectors are defined by the line from 
the tip of VA to the instant center /i,3· These vectors can then be slid along their arcs back 
to points B and C, maintaining their tangency to the arcs. 

Thus, we have in only a few steps found all the same velocities that were found in 
the more tedious method of Example 6-1. The instant center method is a quick graphi­
cal method to analyze velocities, but it will only work if the instant centers are in reach­
able locations for the particular linkage position analyzed. However, the graphical meth­
od using the velocity difference equation shown in Example 6-1 will always work, re­
gardless of linkage position. 

Angular Velocity Ratio 

The angular velocity ratio m Vis defined as the output angular velocity divided by the 
input angular velocity. For a fourbar mechanism this is expressed as: 

ffi4 mv=-
ffi2 

(6.10) 

We can derive this ratio for any linkage by constructing a pair of effective links as 
shown in Figure 6-1 Oa. The definition of effective link pairs is two lines, mutually par­
allel, drawn through the fixed pivots and intersecting the coupler extended. These are 
shown as 0 2A' and 04,13' in Figure 6-lOa. Note that there is an infinity of possible effec­
tive link pairs. They must be parallel to one another but may make any angle with link 
3. In the figure they are shown perpendicular to link 3 for convenience in the derivation 
to follow. The angle between links 2 and 3 is shown as v. The transmission angle be-



• This limitation on 
transmission angle is only 
critical if the output load is 
applied to a link that is 
pi voted to ground ( to link 4 
in the case of a fourbar 
linkage). If the load is 
applied to a floating link 
(coupler), then other 
measures of the quality of 
force transmission than the 
transmission angle are 
more appropriate, as 
discussed in Chapter 12. 
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tween links 3 and 4 isµ. We will now derive an expression for the angular velocity ratio 
using these effective links, the actual link lengths, and angles v and µ. 

From geometry: 

0 2A'=(0 2A)sinv 

From equation 6.7 

(6.1 la) 

(6.1 lb) 

The component of velocity VA' lies along the link AB. Just as with a two-force mem­
ber in which a force applied at one end transmits only its component that lies along the 
link to the other end, this velocity component can be transmitted along the link to point 
B. This is sometimes called the principle oftransmissibility. We can then equate these 
components at either end of the link. 

Then: 

rearranging: 

and substituting: 

ro4 = 0 2A' 

ro2 0 4 B' 

(6.llc) 

(6. lld) 

(6.lle) 

(6.11 f) 

Note in equation 6.1 lf that as angle v goes through zero, the angular velocity ratio 
will be zero regardless of the values of mi or the link lengths, and thus W4 will be zero. 
When angle v is zero, links 2 and 3 will be colinear and thus be in their toggle positions. 
We learned in Section 3.3 (p. 80) that the limiting positions oflink 4 are defined by these 
toggle conditions. We should expect that the velocity of link 4 will be zero when it has 
come to the end of its travel. An even more interesting situation obtains if we allow an­
gleµ to go to zero. Equation 6.11 f shows that ro4 will go to infinity when µ = 0, regard­
less of the values of roz or the link lengths. We clearly cannot allow µ to reach zero. In 
fact, we learned in Section 3.3 that we should keep this transmission angleµ above about 
40 degrees to maintain good quality of motion and force transmission.* 

Figure 6- IOb shows the same linkage as in Figure 6- IOa, but the effective links have 
now been drawn so that they are not only parallel but are colinear, and thus lie on top of 
one another. Both intersect the extended coupler at the same point, which is instant cen­
ter /z,4. So, A' and B' of Figure 6-1 0a are now coincident at lz,4· This allows us to write 
an equation for the angular velocity ratio in terms of the distances from the fixed piv­
ots to instant center lz,4· 

W4 02!2 4 
mv=-=--'-

0>2 04/2,4 
(6.1 lg) 

Thus, the instant center /2,4 can be used to determine the angular velocity ratio. 
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FIGURE 6-10 

Effective 
link 2 

Effective link 4 

Effective links and the angular velocity ratio 

Mechanical Advantage 

The power P in a mechanical system can be defined as the dot or scalar product of the 
force vector F and the velocity vector V at any point : 

(6.12a) 

For a rotating system, power P becomes the product of torque T and angular velocity w 
which, in two dimensions, have the same (z) direction: 

P=TW (6.12b) 
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The power flows through a passive system and: 

(6.12c) 

Mechanical efficiency can be defined as: 

(6.12d) 

Linkage systems can be very efficient if they are well made with low friction bear­
ings on all pivots. Losses are often less than 10%. For simplicity in the following analy­
sis we will assume that the losses are zero (i.e., a conservative system). Then, letting Tin 

and roin represent input torque and angular velocity, and Tout and roout represent output 
torque and angular velocity, then: 

and: pout= P;n 

Tout(J)out = T;nwin 

Tout= W;n 

T;n (J)out 

(6.12e) 

(6. l 2f) 

Note that the torque ratio (mT = Tout !Tin) is the inverse of the angular velocity ratio. 

Mechanical advantage (mA) can be defined as: 

F 
mA = out 

F;n 
(6.13a) 

Assuming that the input and output forces are applied at some radii rin and rout, perpen­
dicular to their respective force vectors, 

(6.13b) 

substituting equations 6.13b in 6.13a gives an expression in terms of torque. 

(6.13c) 

Substituting equation 6.12f in 6.13c gives 

(6.13d) 

and substituting equation 6.11 f gives 



See Figure 6-11 and compare equation 6.13e to equation 6.llf and its discussion
under angular velocity ratio above. Equation 6.l3e shows that for any choice of rin and
rout, the mechanical advantage responds to changes in angles v and /.l in opposite fashion
to that of the angular velocity ratio. If the transmission angle /.l goes to zero (which we
don't want it to do), the mechanical advantage also goes to zero regardless of the amount
of input force or torque applied. But, when angle v goes to zero (which it can and does,
twice per cycle in a Grashof linkage), the mechanical advantage becomes infinite! This
is the principle of a rock-crusher mechanism as shown in Figure 6-11. A quite moderate
force applied to link 2 can generate a huge force on link 4 to crush the rock. Of course,
we cannot expect to achieve the theoretical output of infinite force or torque magnitude,
as the strengths of the links and joints will limit the maximum forces and torques obtain-
able. Another common example of a linkage which takes advantage of this theoretically
infinite mechanical advantage at the toggle position is a ViseGrip locking pliers (see Figure
P6-2l, p. 296).

These two ratios, angular velocity ratio and mechanical advantage, provide use-
ful, dimensionless indices of merit by which we can judge the relative quality of vari-
ous linkage designs which may be proposed as solutions.

Using Instant Centers in linkage Design

In addition to providing a quick numerical velocity analysis, instant center analysis more
importantly gives the designer a remarkable overview of the linkage's global behavior.
It is quite difficult to mentally visualize the complex motion of a "floating" coupler link
even in a simple fourbar linkage, unless you build a model or run a computer simulation.
Because this complex coupler motion in fact reduces to an instantaneous pure rotation
about the instant center h,3, finding that center allows the designer to visualize the mo-
tion of the coupler as a pure rotation. One can literally see the motion and the directions
of velocities of any points of interest by relating them to the instant center. It is only nec-
essary to draw the linkage in a few positions of interest, showing the instant center loca-
tions for each position.

VELOCITY ANALYSIS 

(6.13e) 



Figure 6-12 shows a practical example of how this visual, qualitative analysis tech-
nique could be applied to the design of an automobile rear suspension system. Most au-
tomobile suspension mechanisms are either fourbar linkages or fourbar slider-cranks,
with the wheel assembly carried on the coupler (as was also shown in Figure 3-19,
p. 108). Figure 6-l2a shows a rear suspension design from a domestic car of 1970's vin-
tage which was later redesigned because of a disturbing tendency to "bump steer," i.e.,
turn the rear axle when hitting a bump on one side of the car. The figure is a view look-
ing from the center of the car outward, showing the fourbar linkage which controls the
up and down motion of one side of the rear axle and one wheel. Links 2 and 4 are pivot-
ed to the frame of the car which is link 1. The wheel and axle assembly is rigidly at-
tached to the coupler, link 3. Thus the wheel assembly has complex motion in the verti-
cal plane. Ideally, one would like the wheel to move up and down in a straight vertical
line when hitting a bump. Figure 6-12b shows the motion of the wheel and the new in-
stant center (I1,3) location for the situation when one wheel has hit a bump. The velocity
vector for the center of the wheel in each position is drawn perpendicular to its radius
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FIGURE 6-12 
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"Bump steer" due to shift in instant center location 



from Ir,3. You can see that the wheel center has a significant horizontal component of
motion as it moves up over the bump. This horizontal component causes the wheel cen-
ter on that side of the car to move forward while it moves upward, thus turning the axle
(about a vertical axis) and steering the car with the rear wheels in the same way that you
steer a toy wagon. Viewing the path of the instant center over some range of motion
gives a clear picture of the behavior of the coupler link. The undesirable behavior of this
suspension linkage system could have been predicted from this simple instant center
analysis before ever building the mechanism.

Another practical example of the effective use of instant centers in linkage design is
shown in Figure 6-13, which is an optical adjusting mechanism used to position a mirror
and allow a small amount of rotational adjustment. [1] A more detailed account of this
design case study [2] is provided in Chapter 18. The designer, K. Towfigh, recognized
that Ir,3 at point E is an instantaneous "fixed pivot" and will allow very small pure rota-
tions about that point with very small translational error. He then designed a one-piece,
plastic fourbar linkage whose "pin joints" are thin webs of plastic which flex to allow
slight rotation. This is termed a compliant linkage, one that uses elastic deformations
of the links as hinges instead of pin joints. He then placed the mirror on the coupler at
11,3. Even the fixed link 1 is the same piece as the "movable links" and has a small set
screw to provide the adjustment. A simple and elegant design.

6.5 CENTRODES

Figure 6-14 illustrates the fact that the successive positions of an instant center (or cen-
tro) form a path of their own. This path, or locus, of the instant center is called the cen-
trode. Since there are two links needed to create an instant center, there will be two cen-
trodes associated with anyone instant center. These are formed by projecting the path
of the instant center first on one link and then on the other. Figure 6-14a shows the locus
of instant center Ir,3 as projected onto link 1. Because link I is stationary, or fixed, this
is called the fixed centrode. By temporarily inverting the mechanism and fixing link 3
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FIGURE 6-13 

An optical adjustment linkage (Reproduced from reference (2) with permission) 



(a) The fixed centrode 

Cc) The centrodes in contact 

FIGURE 6-14 
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(b) The moving centrode 

3 

Moving Centrode 

----
Fixed centrode 

(d) Roll the moving centrode against the 
fixed centrode to produce the same 
coupler motion as the original linkage 

Open-loop fixed and moving centrodes (or polodes) of a fourbar linkage 



as the ground link, as shown in Figure 6-14b, we can move link 1 as the coupler and
project the locus of 11,3 onto link 3. In the original linkage, link 3 was the moving cou-
pler, so this is called the moving centrode. Figure 6-l4c shows the original linkage with
both fixed and moving centrodes superposed.

The definition of the instant center says that both links have the same velocity at that
point, at that instant. Link 1 has zero velocity everywhere, as does the fixed centrode.
So, as the linkage moves, the moving centrode must roll against the fixed centrode with-
out slipping. If you cut the fixed and moving centrodes out of metal, as shown in Figure
6-14d, and roll the moving centrode (which is link 3) against the fixed centrode (which
is link 1), the complex motion of link 3 will be identical to that of the original linkage.
All of the coupler curves of points on link 3 will have the same path shapes as in the orig-
inallinkage. We now have, in effect, a "linkless" fourbar linkage, really one composed
of two bodies which have these centrode shapes rolling against one another. Links 2 and
4 have been eliminated. Note that the example shown in Figure 6-14 is a non-Grashof
fourbar. The lengths of its centrodes are limited by the double-rocker toggle positions.

All instant centers of a linkage will have centrodes. If the links are directly connect-
ed by a joint, such as lz,3, 13,4, h,2, and 11,4, their fixed and moving centrodes will de-
generate to a point at that location on each link. The most interesting centrodes are those
involving links not directly connected to one another such as 11,3 and h,4. If we look at
the double-crank linkage in Figure 6-l5a in which links 2 and 4 both revolve fully, we
see that the centrodes of 11,3 form closed curves. The motion of link 3 with respect to
link 1 could be duplicated by causing these two centrodes to roll against one another
without slipping. Note that there are two loops to the moving centrode. Both must roll
on the single-loop fixed centrode to complete the motion of the equivalent double-crank
linkage.

We have so far dealt largely with the instant center 11,3. Instant center lz,4 involves
two links which are each in pure rotation and not directly connected to one another. If
we use a special-case Grashoflinkage with the links crossed (sometimes called an anti-
parallelogram linkage), the centrodes of lz,4 become ellipses as shown in Figure 6-l5b.
To guarantee no slip, it will probably be necessary to put meshing teeth on each centrode.
We then will have a pair of elliptical, noncircular gears, or gearset, which gives the
same output motion as the original double-crank linkage and will have the same varia-
tions in the angular velocity ratio and mechanical advantage as the linkage had. Thus
we can see that gearsets are also just fourbar linkages in disguise. Noncircular gears
find much use in machinery, such as printing presses, where rollers must be speeded and
slowed with some pattern during each cycle or revolution. More complicated shapes of
noncircular gears are analogous to cams and followers in that the equivalent fourbar link-
age must have variable-length links. Circular gears are just a special case of noncircu-
lar gears which give a constant angular velocity ratio and are widely used in all ma-
chines. Gears and gearsets will be dealt with in more detail in Chapter 10.

In general, centrodes of crank-rockers and double- or triple-rockers will be open
curves with asymptotes. Centrodes of double-crank linkages will be closed curves. Pro-
gram FOURBARwill calculate and draw the fixed and moving centrodes for any linkage
input to it. Input the datafiles F06-l4.4br, F06-15aAbr, and F06-l5bAbr into program
FOURBARto see the centrodes of these linkage drawn as the linkages rotate.
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A "linkless" linkage

A common example of a mechanism made of centrodes is shown in Figure 6-16a. You
have probably rocked in a Boston or Hitchcock rocking chair and experienced the sooth-
ing motions that it delivers to your body. You may have also rocked in a platfonn rocker
as shown in Figure 6-16b and noticed that its motion did not feel as soothing.

There are good kinematic reasons for the difference. The platform rocker has a fixed
pin joint between the seat and the base (floor). Thus all parts of your body are in pure
rotation along concentric arcs. You are in effect riding on the rocker of a linkage.

The Boston rocker has a shaped (curved) base, or "runners," which rolls against the
floor. These runners are usually not circular arcs. They have a higher-order curve con-
tour. They are, in fact, moving centrodes. The floor is the fixed centrode. When one
is rolled against the other, the chair and its occupant experience coupler curve motion.
Every part of your body travels along a different sixth-order coupler curve which pro-
vides smooth accelerations and velocities and feels better than the cruder second-order
(circular) motion of the platform rocker. Our ancestors, who carved these rocking chairs,

Moving Centrode 

Ca) Closed-loop centrodes of /1 ,3 
for a Grashot double-crank linkage 

FIGURE 6-15 

Closed-loop fixed and moving centrodes 
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probably had never heard of fourbar linkages and centrodes, but they knew intuitively
how to create comfortable motions.

CUSpS

Another example of a centrode which you probably use frequently is the path of the tire
on your car or bicycle. As your tire rolls against the road without slipping, the road be-
comes a fixed centrode and the circumference of the tire is the moving centrode. The
tire is, in effect, the coupler of a linkless fourbar linkage. All points on the contact sur-
face of the tire move along cycloidal coupler curves and pass through a cusp of zero
velocity when they reach the fixed centrode at the road surface as shown in Figure 6-17 a.
All other points on the tire and wheel assembly travel along coupler curves which do not
have cusps. This last fact is a clue to a means to identify coupler points which will have
cusps in their coupler curve. If a coupler point is chosen to be on the moving centrode at
one extreme of its path motion (i.e., at one of the positions ofh,3), then it will have a cusp
in its coupler curve. Figure 6-17b shows a coupler curve of such a point, drawn with
program FOURBAR. The right end of the coupler path touches the moving centrode and
as a result has a cusp at that point. So, if you desire a cusp in your coupler motion, many
are available. Simply choose a coupler point on the moving centrode of link 3. Read the
diskfile F06-17bAbr into program FOURBARto animate that linkage with its coupler
curve or centrodes. Note in Figure 6-14 (p. 264) that choosing any location of instant
center Il,3 on the coupler as the coupler point will provide a cusp at that point.

6.6 VELOCITY OF SLIP

When there is a sliding joint between two links and neither one is the ground link, the
velocity analysis is more complicated. Figure 6-18 shows an inversion of the fourbar
slider-crank mechanism in which the sliding joint is floating, i.e., not grounded. To solve
for the velocity at the sliding joint A, we have to recognize that there is more than one
point A at that joint. There is a point A as part of link 2 (Az), a point A as part oflink 3
(A3), and a point A as part of link 4 (A4). This is a CASE2 situation in which we have at
least two points belonging to different links but occupying the same location at a given
instant. Thus, the relative velocity equation 6.6 (p. 243) will apply. We can usually
solve for the velocity of at least one of these points directly from the known input infor-
mation using equation 6.7 (p. 244). It and equation 6.6 are all that are needed to solve for
everything else. In this example link 2 is the driver, and 8z and OOz are given for the
"freeze frame" position shown. We wish to solve for 004, the angular velocity of link 4,
and also for the velocity of slip at the joint labeled A.

In Figure 6-18 the axis of slip is shown to be tangent to the slider motion and is the
line along which all sliding occurs between links 3 and 4. The axis of transmission is
defined to be perpendicular to the axis of slip and pass through the slider joint at A. This
axis of transmission is the only line along which we can transmit motion or force across
the slider joint, except for friction. We will assume friction to be negligible in this ex-
ample. Any force or velocity vector applied to point A can be resolved into two compo-
nents along these two axes which provide a translating and rotating, local coordinate
system for analysis at the joint. The component along the axis of transmission will do
useful work at the joint. But, the component along the axis of slip does no work, except
friction work.
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Cycloidal path motion Moving centrode 

Fixed centrode 
Cusp 

(a) Cycloidal motion of a circular, moving centrode rolling on a straight, fixed centrode 

FIGURE 6-17 

Examples of centrodes 

Moving centrode ~ Fixed centrode 

Cusp 

(b) Coupler curve cusps exist only on the moving centrode 

;t:aXAMPLE 6-5 

Graphical Velocity Analysis at a Sliding Joint. 

Problem: 

Solution: 

Given 02, 03, 04, ©z, find ffi3, ffi4, VA• by graphical methods, 

(see Figure 6-18) 

Start at the end of the linkage for which you have the most information, Calculate the mag­
nitude of the velocity of point A as part of link 2 (A2) using scalar equation 6.7 (p. 244). 

(a) 
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2 Draw the velocity vector V A
2 

with its length equal to its magnitude v A
2 

at some convenient 
scale and with its root at point A and its direction perpendicular to the radius AO2. Its sense 
is the same as that of Ct½ as is shown in Figure 6-18. 

3 Draw the axis of slip and axis of transmission through point A. 

4 Project V A
2 

onto the axis of slip and onto the axis of transmission to create the components 
V A

2
sli and V,rans of V A

2 
on the axes of slip and transmission, respectively. Note that the 

transfuission component is shared by all true velocity vectors at this point, as it is the only 
component which can transmit across the joint. 

5 Note that link 3 is pin-jointed to link 2, so V A
3 

= V Ar 

6 Note that the direction of the velocity of point V A
4 

is predictable since all points on link 4 
are pivoting in pure rotation about point O 4. Draw the line pp through point A and perpen­
dicular to the effective link 4, AO4. Line pp is the direction of velocity V A

4
. 

7 Construct the true magnitude of velocity vector V A
4 

by extending the projection of the trans­
mission component V 1rans until it intersects line pp. 

8 Project V A
4 

onto the axis of slip to create the slip component V A4slip . 

9 Write the relative velocity vector equation 6.6 (p. 243) for the slip components of point A2 
versus point A4. 

VA4_,lip 

Axis of 
transmission 

FIGURE 6-18 

(b) 

A 

Axis of slip 

Velocity of slip and velocity of transmission (note that the applied ro is negative as shown) 
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10 The angular velocities of links 3 and 4 are identical because they share the slider joint and 
must rotate together. They can be calculated from equation 6.7: 

(c) 

Instant center analysis can also be used to solve sliding joint velocity problems 
graphically. 

,bEXAMPLE 6-6 

Graphical Velocity Analysis in the Fourbar Inverted Slider-Crank Mechanism Using 
Instant Centers. 

Problem: 

Solution: (see Figure 6-19) 

Start at the end of the linkage about which you have the most information. Calculate the 
magnitude of the velocity of point A as part of link 2 (A2) using scalar equation 6.7 (p. 244). 

(a) 

2 Draw the velocity vector V A
2 

with its length equal to its magnitude v A2 at some convenient 
scale and with its root at point A and its direction perpendicular to the radius A0 2. Its sense 
is the same as that of co2 as is shown in Figure 6-19. Note that link 3 is pin-jointed to link 2, 
so VA3 =VA2• 

3 Find the instant centers of the linkage as shown in Figure 6-19. 

4 Define a point (B) on the slider block for analysis. Draw the axis of slip and axis of trans­
mission through point B. Note that point B is a multiple point, belonging to both link 3 and 
link 4, and has different linear velocities in each. 

5 Project V A
2 

onto the axis of slip to create the orthogonal component V A3sli along link 3. 
Translate this slip component along link 3 and place it at point B. Rename /v B3slip" 

6 The direction of the true velocity of point B as part of link 3 (V B
3

) is along a line perpendic­
ular to the radius from/ 1 3 to B. Construct a perpendicular to V 83 1

. at its tip and create V 83 . 
' s IP 

7 Project V 83 onto the axis of transmission to create the component Vr,ans· Note that the trans­
mission component is shared by all true velocity vectors at this point, as it is the only com­
ponent which can transmit across the joint. 

8 Note that the direction of the velocity of point V 84 is predictable since all points on link 4 
are pivoting in pure rotation about point O 4. Construct a line in the direction of V 84 perpen­
dicular to the effective link 4. Construct the true magnitude of velocity vector V B

4 
by extend­

ing the projection of the transmission component V1rans until it intersects the line ofV B4-

9 Project V 84 onto the axis of slip to create the slip component V 84 slip" 
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A 

Vstip34 V 83_,lip - V 84s/ip 

FIGURE 6-19 

Graphical velocity analysis of an inverted slider-crank linkage 

IO The total slip velocity at Bis the difference between the two slip components. Write the rela­
tive velocity vector equation 6.6 (p. 243) for the slip components of point B3 versus point B4. 

(b) 

11 The angular velocities of links 3 and 4 are identical because they share the slider joint and 
must rotate together. They can be calculated from equation 6.7: 

(c) 

The above examples show how a sliding joint linkage can be solved graphically for 
velocities at one position. In the next section, we will develop the general solution using 
algebraic equations to solve the same type of problem. 

6.7 ANALYTICAL SOLUTIONS FOR VELOCITY ANALYSIS 

The Fourbar Pin-Jointed Linkage 

The position equations for the fourbar pin-jointed linkage were derived in Section 4.5 
(p. 152). The linkage was shown in Figure 4-7 (p. 155) and is shown again in Figure 
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6-20 on which we also show an input angular velocity ffi2 applied to link 2. This ffi2 can 
be a time-varying input velocity. The vector loop equation is shown in equations 4.5a 
and 4.5c, repeated here for your convenience. 

(4.5a) 

As before, we substitute the complex number notation for the vectors, denoting their 
scalar lengths as a, b, c, d as shown in Figure 6-2Oa. 

(4.5c) 

To get an expression for velocity, differentiate equation 4.5c with respect to time. 

But, 

and: 

• i92 d82 .b j93 d83 . j94 d84 0 ~e -+J e --~e -= 
dt dt dt 

d0 3 -(I) • dt- 3, 

(6.14a) 

(6.14b) 

(6.14c) 

Note that the 0 1 term has dropped out because that angle is a constant, and thus its 
derivative is zero. Note also that equation 6.14 is, in fact the relative velocity or veloc­
ity difference equation. 

where: 

·9 
VA=jaO>zel 2 

V BA = jb0>3ej83 

VB = jc0>4ej84 

(6.15a) 

(6.15b) 

Please compare equations 6.15 to equations 6.3, 6.5, and 6.6 (pp. 242 and 243). This 
equation is solved graphically in the vector diagram of Figure 6-2Ob. 

We now need to solve equation 6.14 for ffi3 and ro4, knowing the input velocity ffi2, 
the link lengths, and all link angles. Thus the position analysis derived in Section 4.5 
must be done first to determine the link angles before this velocity analysis can be com­
pleted. We wish to solve equation 6.14 to get expressions in this form: 

(6.16) 

The strategy of solution will be the same as was done for the position analysis. First, 
substitute the Euler identity from equation 4.4a (p. 155) in each term of equation 6.14c: 

jaro 2(cos02 + jsin0 2 )+ jbro3(cos03 + jsin0 3) 

-jcro 4 (cos04 + jsin0 4)=O (6.17a) 

Multiply through by the operator j: 
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(b) 

X 

(a) 

FIGURE 6-20 

Position vector loop for a fourbar linkage showing velocity vectors for a negative (cw) CO2 

aco2 (jcos9 2 + /sin9 2 )+bco3(jcos9 3 + /sin9 3) 

-cco 4 Vcos9 4 + j2 sin 94 ) = 0 (6.17b) 

The cosine terms have become the imaginary, or y-directed terms, and because j2 = -1, 
the sine terms have become real or x-directed. 

aco2 (-sin9 2 + jcos8 2 )+bro 3(-sin8 3 + jcos8 3 ) 

-cro 4 (-sin8 4 + jcos8 4 )=0 (6.17c) 

We can now separate this vector equation into its two components by collecting all 
real and all imaginary terms separately: 

real part (x component): 

(6.17d) 

imaginary part (y component): 

(6.17e) 

Note that the j's have cancelled in equation 6.17e. We can solve these two equa­
tions, 6.17 d and 6.17 e, simultaneously by direct substitution to get: 

(6.18a) 

(6.18b) 
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Once we have solved for ro3 and ro4, we can then solve for the linear velocities by 
substituting the Euler identity into equations 6.15, 

VA = jam 2 (cos9
2 

+ jsin9
2

) = am
2

(-sin 9
2 

+ j cos9
2

) 

V8A =Jbm 3 (cos9 3 + jsin9 3)=bm 3(-sin9 3 + jcos9 3 ) 

V8 =Jcm 4 (cos9 4 + jsin9 4 )=cm 4 (-sin9 4 + jcos9 4 ) 

(6.19a) 

(6.19b) 

(6.19c) 

where the real and imaginary terms are the x and y components, respectively. Equations 
6.18 and 6.19 provide a complete solution for the angular velocities of the links and the 
linear velocities of the joints in the pin-jointed fourbar linkage. Note that there are also 
two solutions to this velocity problem, corresponding to the open and crossed branches 
of the linkage. They are found by the substitution of the open or crossed branch values 
of03 and 04obtained from equations4.10 (p. 158) and 4.13 (p. 159) into equations 6.18 
and 6.19. Figure 6-20a (p. 273) shows the open branch. 

The Fourbar Slider-Crank 

The position equations for the fourbar offset slider-crank linkage (inversion #1) were de­
rived in Section 4.6 (p. 159). The linkage was shown in Figure 4-9 (p. 160) and is shown 
again in Figure 6-2la on which we also show an input angular velocity mi applied to link 
2. This mi can be a time-varying input velocity. The vector loop equation 4.14 is re­
peated here for your convenience. 

(4.14a) 

(4.14b) 

Differentiate equation 4.14b with respect to time noting that a, b, c, 01, and 04 are 
constant but the length of link d varies with time in this inversion. 

(6.20a) 

The term d dot is the linear velocity of the slider block. Equation 6.20a is the veloc­
ity difference equation 6.5 (p. 243) and can be written in that form. 

or: 

but: (6.20b) 

then: 

Equation 6.20 is identical in form to equations 6.5 and 6.15a. Note that because we 
arranged the position vector R3 in Figures 4-9 and 6-21 with its root at point B, directed 
from B to A, its derivative represents the velocity difference of point A with respect to 
point B, the opposite of that in the previous fourbar example. Compare this also to equa-
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y y 

Vs 
-x 

Vs 

R4 NvsA 
C VA 

84 

J Cb) .. X 

(a) 

FIGURE 6-21 

Position vector loop for a fourbar slider-crank linkage showing velocity vectors for a negative (cw) "l2 

tion 6.15b noting that its vector R3 is directed from A to B. Figure 6-2lb shows the vec­
tor diagram of the graphical solution to equation 6.20b. 

Substitute the Euler equivalent, equation 4.4a (p. 155), in equation 6.20a, 

simplify, 

aco2 (-sin0 2 + jcos0 2 )-bco 3(-sin0 3 + jcose 3)-d=O 

and separate into real and imaginary components. 

real part (x component): 

imaginary part (y component): 

(6.21a) 

(6.21b) 

(6.21c) 

(6.21d) 

These are two simultaneous equations in the two unknowns, d dot and 00:3. Equa­
tion 6.21d can be solved for 003 and substituted into 6.21c to find d dot. 

(6.22a) 

(6.22b) 

The absolute velocity of point A and the velocity difference of point A versus point 
B are found from equation 6.20: 
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VA =aco 2(-sin0 2 + jcos0 2) 

VAB = bco3(-sin9 3 + jcos9 3) 

VBA =-VAB 

The Fourbar Inverted Slider-Crank 

(6.23a) 

(6.23b) 

(6.23c) 

The position equations for the fourbar inverted slider-crank linkage were derived in Sec­
tion 4.7 (p. 161). The linkage was shown in Figure 4-10 (p. 162) and is shown again in 
Figure 6-22 on which we also show an input angular velocity O>z applied to link 2. This 
O>z can vary with time. The vector loop equations 4.14 shown on p. 27 4 are valid for this 
linkage as well. 

All slider linkages will have at least one link whose effective length between joints 
varies as the linkage moves. In this inversion the length of link 3 between points A and 
B, designated as b, will change as it passes through the slider block on link 4. To get an 
expression for velocity, differentiate equation 4.14b with respect to time noting that a, c, 
d, and 01 are constant and b varies with time. 

(6.24) 

The value of db/dt will be one of the variables to be solved for in this case and is the 
b dot term in the equation. Another variable will be m4, the angular velocity of link 4. 
Note, however, that we also have an unknown in m3, the angular velocity of link 3. This 
is a total of three unknowns. Equation 6.24 can only be solved for two unknowns. Thus 
we require another equation to solve the system. There is a fixed relationship between 
angles 03 and 04, shown as y in Figure 6-22 and defined in equation 4.18, repeated here: 

03=84±')' 

Differentiate it with respect to time to obtain: 

We wish to solve equation 6.24 to get expressions in this form: 

co3 =ro 4 =J(a,b,c,d,0 2,0 3,0 4,ro2) 

db • 
- = b = g(a, b, c, d, 02, 03, 04, 0>2) 
dt 

( 4.18) 

(6.25) 

(6.26) 

Substitution of the Euler identity (equation 4.4a, p. 155) into equation 6.24 yields: 

jaro2(cos82 + jsin0 2)- jbro 3(cos03 + jsin93) 

-b(cos0 3 + jsin0 3)- jcro 4(cos0 4 + jsin0 4) = 0 

Multiply by the operator j and substitute m4 for m3 from equation 6.25: 

aro2(-sin0 2 + jcos0 2)-bro 4(-sin0 3 + jcos0 3) 

-b( cos0 3 + jsin 03)-cro 4(-sin 04 + j cos0 4) = 0 

(6.27a) 

(6.27b) 
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FIGURE 6-22 

Velocity analysis of inversion #3 of the slider-crank fourbar linkage 

We can now separate this vector equation into its two components by collecting all 
real and all imaginary terms separately: 

real part (x component): 

(6.28a) 

imaginary part ( y component): 

(6.28b) 

Collect terms and rearrange equations 6.28 to isolate one unknown on the left side. 

bcos0 3 = -aco 2 sin0 2 +co4 (bsin0 3 + csin0 4 ) 

bsin0 3 =aco 2 cos02 -co 4 (bcos0 3 +ccos0 4 ) 

(6.29a) 

(6.29b) 

Either equation can be solved for b dot and the result substituted in the other. Solv­
ing equation 6.29a: 

. -aco 2sin0 2 +co4 (bsin0 3 +csin9 4 ) 
b=------~----~ 

cos03 
(6.30a) 

Substitute in equation 6.29b and simplify: 

aco2 cos( 02 - 03) 
C04 = ( ) b+ccos 04 -0 3 

(6.30b) 

Equation 6.3Oa provides the velocity of slip at point B. Equation 6.3Ob gives the 
angular velocity oflink 4. Note that we can substitute -y = 04 -0 3 from equation 4. 18 
(for an open linkage) into equation 6.3Ob to further simplify it. Note that cos(-y) = cos(y). 
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aw2 cos( 82 - 83) 
W4 =--~-- (6.3Oc) 

b+ccosy 

The velocity of slip from equation 6.3Oa is always directed along the axis of slip as 
shown in Figures 6-19 (p. 271) and 6-22 (p. 277). There is also a component orthogonal 
to the axis of slip called the velocity of transmission. This lies along the axis of trans­
mission which is the only line along which any useful work can be transmitted across 
the sliding joint. All energy associated with motion along the slip axis is converted to 
heat and'lost. 

The absolute linear velocity of point A is found from equation 6.23a. We can find 
the absolute velocity of point Bon link 4 since 004 is now known. From equation 6.15b: 

(6.31) 

6.8 VELOCITY ANALYSIS OF THE GEARED FIVEBAR LINKAGE 

The position loop equation for the geared fivebar mechanism was derived in Section 4.8 
and is repeated here. See Figure P6-4 for notation. 

aej 82 +bej 83 -cej 84 -dej 85 - f ej81 =0 

Differentiate this with respect to time to get an expression for velocity. 

Substitute the Euler equivalents: 

aw 2j(cos0 2 + jsin0 2 )+bw 3j(cos0 3 + jsin0 3 ) 

-cw 4j( cos0 4 + jsin0 4 )-d w5j( cos0 5 + jsin0 5 ) = 0 

(4.23b) 

(6.32a) 

(6.32b) 

Note that the angle 05 is defined in terms of 02, the gear ratio A, and the phase angle <j>. 

05 =A0 2 +<1> (4.23c) 

Differentiate with respect to time: 

(6.32c) 

Since a complete position analysis must be done before a velocity analysis, we will 
assume that the values of 05 and 005 have been found and will leave these equations in 
terms of 05 and 005. 

Separating the real and imaginary terms in equation 6.32b: 

(6.32d) 

(6.32e) 

The only two unknowns are 003 and 004. Either equation 6.32d or 6.32e can be solved 
for one unknown and the result substituted in the other. The solution for 003 is: 
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_ 2sin0 4 [aw2 sin(02 -0 4 )+dw 5 sin(04 -0 5 )] 

W3 - [ 
b cos(03 -20 4 )-cos0 3 ] 

(6.33a) 

The angular velocity 0>4 can be found from equation 6.32d using 0>:3. 

(6.33b) 

With all link angles and angular velocities known, the linear velocities of the pin 
joints can be found from: 

VA= aw 2(-sin0 2 + jcos0 2 ) 

V BA = bw 3(-sin0 3 + j cos03 ) 

Ve =dw 5(-sin0 5 + jcos0 5 ) 

VB=VA+VBA 

6.9 VELOCITY OF ANY POINT ON A LINKAGE 

(6.33c) 

(6.33d) 

(6.33e) 

(6.33f) 

Once the angular velocities of all the links are found it is easy to define and calculate the 
velocity of any point on any link for any input position of the linkage. Figure 6-23 shows 
the fourbar linkage with its coupler, link 3, enlarged to contain a coupler point P. The 
crank and rocker have also been enlarged to show points S and U which might represent 
the centers of gravity of those links. We want to develop algebraic expressions for the 
velocities of these (or any) points on the links. 

To find the velocity of point S, draw the position vector from the fixed pivot 02 to 
point S. This vector, Rsa 2 makes an angle 02 with the vector RAa2. The angle 02 is com­
pletely defined by the geometry of link 2 and is constant. The position vector for point S 
is then: 

Rso
2 

=Rs= sej(e 2 +o2 ) = s[cos(02 +8 2)+jsin(0 2 +8 2)] 

Differentiate this position vector to find the velocity of that point. 

( 4.25) 

Vs =jsei( 92 +02 lm2 =sm 2[-sin(0 2 +82)+ jcos(9 2 +82)] (6.34) 

The position of point U on link 4 is found in the same way, using the angle 04 which 
is a constant angular offset within the link. The expression is: 

Ru04 =uei( 94 +o4 ) =u[cos(0 4 +8 4 )+ jsin(0 4 +8 4 )] 

Differentiate this position vector to find the velocity of that point. 

(4.26) 

Vu =juei( 94 +o4 )w 4 =uw 4 [-sin(0 4 +8 4 )+ jcos(0 4 +8 4 )] (6.35) 

The velocity of point Pon link 3 can be found from the addition of two velocity vec­
tors, such as VA and V PA· VA is already defined from our analysis of the link velocities. 
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~VA 

VpA~ 

Vp 

(b) 

Finding the velocities of points on the links 

V PA is the velocity difference of point P with respect to point A. Point A is chosen as the 
reference point because angle 03 is defined in a local coordinate system whose origin is 
at A. Position vector RpA is defined in the same way as Rs or Ru using the internal link 
offset angle O] and the angle of link 3, 03. This was done in equation 4.27. 

RPA = pej(e 3 +o3 ) = p(cos(03 +5 3)+ jsin(03 +63)] (4.27a) 

Rp =RA +RpA (4.27b) 

Differentiate this position vector to find the velocity of that point. 

(6.36a) 

(6.36b) 

Please compare equation 6.36 with equations 6.5 (p. 243) and 6.15 (p. 272). It is, 
again, the velocity difference equation. 
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