






The graphical solution to this equation is shown in Figure 7-3b.

As we did for velocity analysis, we give these two cases different names despite the
fact that the same equation applies. Repeating the definition from Section 6.1 (p. 241),
modified to refer to acceleration:

CASE 1: Two points in the same body => acceleration difference

CASE 2: Two points in different bodies => relative acceleration

7.2 GRAPHICAL ACCELERATION ANALYSIS

The comments made in regard to graphical velocity analysis in Section 6.2 (p. 244) apply
as well to graphical acceleration analysis. Historically, graphical methods were the only
practical way to solve these acceleration analysis problems. With some practice, and with
proper tools such as a drafting machine or CAD package, one can fairly rapidly solve for
the accelerations of particular points in a mechanism for anyone input position by draw-
ing vector diagrams. However, if accelerations for many positions of the mechanism are
to be found, each new position requires a completely new set of vector diagrams be drawn.
Very little of the work done to solve for the accelerations at position 1 carries over to po-
sition 2, etc. This is an even more tedious process than that for graphical velocity analy-
sis because there are more components to draw. Nevertheless, this method still has more
than historical value as it can provide a quick check on the results from a computer pro-









This equation represents the absolute acceleration of some general point P referenced to
the origin of the global coordinate system. The right side defines it as the sum of the ab-
solute acceleration of some other reference point A in the same system and the accelera-
tion difference (or relative acceleration) of point P versus pointA. These terms are then
further broken down into their normal (centripetal) and tangential components which have
definitions as shown in equation 7.2 (p. 301).

Let us review what was done in Example 7-1 in order to extract the general strategy
for solution of this class of problem. We started at the input side of the mechanism, as
that is where the driving angular acceleration cx2 was defined. We first looked for a point
(A) for which the motion was pure rotation. We then solved for the absolute acceleration
of that point (AA) using equations 7.4 and 7.6 by breaking AA into its normal and tangen-
tial components. (Steps 1and 2)

We then used the point (A) just solved for as a reference point to define the transla-
tion component in equation 7.4 written for a new point (B). Note that we needed to choose
a second point (B) which was in the same rigid body as the reference point (A) which we
had already solved, and about which we could predict some aspect of the new point's
(B's) acceleration components. In this example, we knew the direction of the component
A~, though we did not yet know its magnitude. We could also calculate both magnitude

















depending on the sense of 0). (Note that we chose to align the position vector Rp with the
axis of slip in Figure 7-7 which can always be done regardless of the location of the cen-
ter of rotation-also see Figure 7-6 (p. 312) where RJ is aligned with the axis of slip.) All
four components from equation 7.19 are shown acting on point P in Figure 7-7b. The total
acceleration Ap is the vector sum of the four terms as shown in Figure 7-7c. Note that
the normal acceleration term in equation 7.19b is negative in sign, so it becomes a sub-
traction when substituted in equation 7.19c.

This Coriolis component of acceleration will always be present when there is a ve-
locity of slip associated with any member which also has an angular velocity. In the
absence of either of those two factors the Coriolis component will be zero. You have prob-
ably experienced Coriolis acceleration if you have ever ridden on a carousel or merry-go-
round. If you attempted to walk radially from the outside to the inside (or vice versa)
while the carousel was turning, you were thrown sideways by the inertial force due to the
Coriolis acceleration. You were the slider block in Figure 7-7, and your slip velocity com-
bined with the rotation of the carousel created the Coriolis component. As you walked
from a large radius to a smaller one, your tangential velocity had to change to match that
of the new location of your foot on the spinning carousel. Any change in velocity re-
quires an acceleration to accomplish. It was the "ghost of Coriolis" that pushed you side-
ways on that carousel.

Another example of the Coriolis component is its effect on weather systems. Large
objects which exist in the earth's lower atmosphere, such as hurricanes, span enough area
to be subject to significantly different velocities at their northern and southern extremi-
ties. The atmosphere turns with the earth. The earth's surface tangential velocity due to
its angular velocity varies from zero at the poles to a maximum of about 1000 mph at the
equator. The winds of a storm system are attracted toward the low pressure at its center.
These winds have a slip velocity with respect to the surface, which in combination with
the earth's 0), creates a Coriolis component of acceleration on the moving air masses. This
Coriolis acceleration causes the inrushing air to rotate about the center, or "eye" of the
storm system. This rotation will be counterclockwise in the northei-n hemisphere and
clockwise in the southern hemisphere. The movement of the entire storm system from
south to north also creates a Coriolis component which will tend to deviate the storm's
track eastward, though this effect is often overridden by the forces due to other large air
masses such as high-pressure systems which can deflect a storm. These complicated fac-
tors make it difficult to predict a large storm's true track.

Note that in the analytical solution presented here, the Coriolis component will be ac-
counted for automatically as long as the differentiations are correctly done. However,
when doing a graphical acceleration analysis one must be on the alert to recognize the
presence of this component, calculate it, and include it in the vector diagrams when its
two constituents Vslip and 0) are both nonzero.

The Fourbar Inverted Slider-Crank

The position equations for the fourbar inverted slider-crank linkage were derived in Sec-
tion 4.7 (p. 159). The linkage was shown in Figures 4-10 (p. 162) and 6-22 (p. 277) and
is shown again in Figure 7-8a on which we also show an input angular acceleration a2
applied to link 2. This a2 can vary with time. The vector loop equations 4.14 (p. 311) are
valid for this linkage as well.















Please compare equation 7.32 with equation 7.4 (p. 302). It is again the accelera-
tion difference equation. Note that this equation applies to any point on any link at any
position for which the positions and velocities are defined. It is a general solution for
any rigid body.

7.6 HUMAN TOLERANCE OF ACCELERATION

It is interesting to note that the human body does not sense velocity, except with the eyes,
but is very sensitive to acceleration. Riding in an automobile, in the daylight, one can
see the scenery passing by and have a sense of motion. But, traveling at night in a com-
mercial airliner at a 500 mph constant velocity, we have no sensation of motion as long
as the flight is smooth. What we will sense in this situation is any change in velocity due
to atmospheric turbulence, takeoffs, or landings. The semicircular canals in the inner ear
are sensitive accelerometers which report to us on any accelerations which we experi-
ence. You have no doubt also experienced the sensation of acceleration when riding
in an elevator and starting, stopping, or turning in an automobile. Accelerations pro-
duce dynamic forces on physical systems, as expressed in Newton's second law,
F=ma. Force is proportional to acceleration, for a constant mass. The dynamic forces
produced within the human body in response to acceleration can be harmful if excessive.



The human body is, after all, not rigid. It is a loosely coupled bag of water and tissue,
most of which is quite internally mobile. Accelerations in the headward or footward direc-
tions will tend to either starve or flood the brain with blood as this liquid responds to New-
ton's law and effectively moves within the body in a direction opposite to the imposed accel-
eration as it lags the motion of the skeleton. Lack of blood supply to the brain causes black-
out; excess blood supply causes redout. Either results in death if sustained for a long enough
period.

A great deal of research has been done, largely by the military and NASA, to deter-
mine the limits of human tolerance to sustained accelerations in various directions. Fig-
ure 7-10 shows data developed from such tests. [1] The units of linear acceleration were
defined in Table 1-4 (p. 19) as inlsec2, ft/sec2, or m/sec2. Another common unit for ac-
celeration is the g, defined as the acceleration due to gravity, which on Earth at sea level is
approximately 386 inlsec2, 32.2 ftJsec2, or 9.8 m/sec2. The g is a very convenient unit to
use for accelerations involving the human as we live in a 1 g environment. Our weight,
felt on our feet or buttocks, is defined by our mass times the acceleration due to gravity
or mg. Thus an imposed acceleration of 1 g above the baseline of our gravity, or 2 g's,
will be felt as a doubling of our weight. At 6 g's we would feel six times as heavy as
normal and would have great difficulty even moving our arms against that acceleration.
Figure 7-10 shows that the body's tolerance of acceleration is a function of its direction
versus the body, its magnitude, and its duration. Note also that the data used for this chart
were developed from tests on young, healthy military personnel in prime physical con-
dition. The general population, children and elderly in particular, should not be expected
to be able to withstand such high levels of acceleration. Since much machinery is de-
signed for human use, these acceleration tolerance data should be of great interest and
value to the machine designer. Several references dealing with these human factors data
are provided in the bibliography to Chapter 1 (p. 20).

Another useful benchmark when designing machinery for human occupation is to
attempt to relate the magnitudes of accelerations which you commonly experience to the
calculated values for your potential design. Table 7-1 lists some approximate levels of
acceleration, in g's, which humans can experience in everyday life. Your own experience
of these will help you develop a "feel" for the values of acceleration which you encounter
in designing machinery intended for human occupation.

Note that machinery which does not carry humans is limited in its acceleration lev-
els only by considerations of the stresses in its parts. These stresses are often generated
in large part by the dynamic forces due to accelerations. The range of acceleration values
in such machinery is so wide that it is not possible to comprehensively define any guide-
lines for the designer as to acceptable or unacceptable levels of acceleration. If the mov-
ing mass is small, then very large numerical values of acceleration are reasonable. If the
mass is large, the dynamic stresses which the materials can sustain may limit the allow-
able accelerations to low values. Unfortunately, the designer does not usually know how
much acceleration is too much in a design until completing it to the point of calculating
stresses in the parts. This usually requires a fairly complete and detailed design. If the
stresses turn out to be too high and are due to dynamic forces, then the only recourse is
to iterate back through the design process and reduce the accelerations and or masses in
the design. This is one reason that the design process is a circular and not a linear one.



As one point of reference, the acceleration of the piston in a small, four-cylinder
economy car engine (about 1.5L displacement) at idle speed is about 40 g's. At highway
speeds the piston acceleration may be as high as 700 g's. At the engine's top speed of
6000 rpm the peak piston acceleration is 2000 g's! As long as you're not riding on the
piston, this is acceptable. These engines last a long time in spite of the high accelerations
they experience. One key factor is the choice of low-mass, high-strength materials for
the moving parts to both keep the dynamic forces down at these high accelerations and
to enable them to tolerate high stresses.

7.7 JERK

No, not you! The time derivative of acceleration is called jerk, pulse, or shock. The
name is apt, as it conjures the proper image of this phenomenon. Jerk is the time rate of
change of acceleration. Force is proportional to acceleration. Rapidly changing accel-
eration means a rapidly changing force. Rapidly changing forces tend to "jerk" the ob-
ject about! You have probably experienced this phenomenon when riding in an automo-
bile. If the driver is inclined to 'jackrabbit" starts and accelerates violently away from
the traffic light, you will suffer from large jerk because your acceleration will go from zero
to a large value quite suddenly. But, when Jeeves, the chauffeur, is driving the Rolls, he
always attempts to minimize jerk by accelerating gently and smoothly, so that Madame
is entirely unaware of the change.








