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Take it to warp five, Mr. Sulu
CAPTAIN KIRK

7.0 INTRODUCTION

Once a velocity analysis is done, the next step is to determine the accelerations of all links
and points of interest in the mechanism or machine. We need to know the accelerations
to calculate the dynamic forces from F = ma. The dynamic forces will contribute to the
stresses in the links and other components. Many methods and approaches exist to find
accelerations in mechanisms. We will examine only a few of these methods here. We
will first develop a manual graphical method, which is often useful as a check on the
more complete and accurate analytical solution. Then we will derive the analytical so-
lution for accelerations in the fourbar and inverted slider-crank linkages as examples of
the general vector loop equation solution to acceleration analysis problems.

7.1 DEFINITION OF ACCELERATION

Acceleration is defined as the rate of change of velocity with respect to time. Ve-
locity (V, ®) is a vector quantity and so is acceleration. Accelerations can be angu-
lar or linear. Angular acceleration will be denoted as o and linear acceleration
as A.

dw
o=—
dt

_dv

A=—
dt

(7.1)

Figure 7-1 shows a link PA in pure rotation, pivoted at point A in the xy plane. We are
interested in the acceleration of point P when the link is subjected to an angular velocity
 and an angular acceleration o, which need not have the same sense. The link’s posi-
tion is defined by the position vector R, and the velocity of point P is V4. These vectors
were defined in equations 6.2 and 6.3 which are repeated here for convenience. (See also
Figure 6-1, p. 242.)
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FIGURE

Acceleration of a link in u

Rp, = pe’® (6.2)

dR o do ,
Vps =—22 = pjel® = = po je® 6.3
PAS T TRIeT - =paje (6.3)

where p is the scalar length of the vector Rps. We can easily differentiate equation 6.3
to obtain an expression for the acceleration of point P:

dVpy _ d(ijeje)
a  dt

Aps =

Aps =jp(eje‘ji—(:)+(0jej9 Z—?) 72)
Apy = potjeje —p(o2 e/

t n
Apy=Apy+Ap,

Note that there are two functions of time in equation 6.3, 0 and ®. Thus there are two
terms in the expression for acceleration, the tangential component of acceleration A%,
involving o, and the normal (or centripetal) component A4 involving 2. As a result of
the differentiation, the tangential component is multiplied by the (constant) complex op-
erator j. This causes a rotation of this acceleration vector through 90 © with respect to the
original position vector. (See also Figure 4-5b, p. 152.) This 90° rotation is nominally
positive, or counterclockwise (CCW). However, the tangential component is also multi-
plied by o, which may be either positive or negative. As a result, the tangential compo-
nent of acceleration will be rotated 90° from the angle 0 of the position vector in a direc-
tion dictated by the sign of o. This is just mathematical verification of what you already
knew, namely that tangential acceleration is always in a direction perpendicular to the
radius of rotation and is thus tangent to the path of motion as shown in Figure 7-1. The
normal, or centripetal, acceleration component is multiplied by /2, or —1. This directs the
centripetal component at 180° to the angle O of the original position vector, i.e., toward
the center (centripetal means toward the center). The total acceleration A p, of point P is
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the vector sum of the tangential A%, and normal A%, components as shown in Figure
7-1 and equation 7.2.

Substituting the Euler identity (equation 4.4a, p. 155) into equation 7.2 gives us the
real and imaginary (or x and y) components of the acceleration vector.

Ap, = po(-sin@+ jcosB)— po? (cos® + jsin6) (7.3)

The acceleration Apy in Figure 7-1 can be referred to as an absolute acceleration
since it is referenced to A, which is the origin of the global coordinate axes in that sys-
tem. As such, we could have referred to it as Ap, with the absence of the second sub-
script implying reference to the global coordinate system.

Figure 7-2a shows a different and slightly more complicated system in which the
pivot A is no longer stationary. It has a known linear acceleration A4 as part of the trans-
lating carriage, link 3. If o is unchanged, the acceleration of point P versus A will be the
same as before, but A p4 can no longer be considered an absolute acceleration. It is now
an acceleration difference and must carry the second subscript as Aps. The absolute
acceleration A p must now be found from the acceleration difference equation whose
graphical solution is shown in Figure 7-2b:

Ap=A +Apy
(7.4)

(A5 +Ap)=(A% +A%)+(Aka +A%)

Note the similarity of equation 7.4 to the velocity difference equation (equation 6.5,
p. 243). Note also that the solution for A p in equation 7.4 can be found either by adding
the resultant vector A py or its normal and tangential components, A%, and A%, to the
vector A, in Figure 7-2b. The vector A4 has a zero normal component in this example
because link 3 is in pure translation.
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Acceleration difference in a system with a positive (CCW) ap nd neTi (CW) oo
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Relative acceleratiol

Figure 7-3 shows two independent bodies P and A, which could be two automobiles,
moving in the same plane. Auto #1 is turning and accelerating into the path of auto #2,
which is decelerating to avoid a crash. If their independent accelerations Ap and A, are
known, their relative acceleration A p4 can be found from equation 7.4 arranged algebra-
ically as:

APAzAP_AA (75)
The graphical solution to this equation is shown in Figure 7-3b.

As we did for velocity analysis, we give these two cases different names despite the
fact that the same equation applies. Repeating the definition from Section 6.1 (p. 241),
modified to refer to acceleration:

CASE 1: Two points in the same body => acceleration difference

CASE 2: Two points in different bodies => relative acceleration

7.2 GRAPHICAL ACCELERATION ANALYSIS

The comments made in regard to graphical velocity analysis in Section 6.2 (p. 244) apply
as well to graphical acceleration analysis. Historically, graphical methods were the only
practical way to solve these acceleration analysis problems. With some practice, and with
proper tools such as a drafting machine or CAD package, one can fairly rapidly solve for
the accelerations of particular points in a mechanism for anyone input position by draw-
ing vector diagrams. However, if accelerations for many positions of the mechanism are
to be found, each new position requires a completely new set of vector diagrams be drawn.
Very little of the work done to solve for the accelerations at position 1 carries over to po-
sition 2, etc. This is an even more tedious process than that for graphical velocity analy-
sis because there are more components to draw. Nevertheless, this method still has more
than historical value as it can provide a quick check on the results from a computer pro-
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gram solution. Such a check only needs to be done for a few positions to prove the valid-
ity of the program.

To solve any acceleration analysis problem graphically, we need only three equations,
equation 7.4 and equations 7.6 (which are merely the scalar magnitudes of the terms in
equation 7.2, p. 301):

|A'|=A’ =ro
(7.6)

2

A"|=A" =ro

Note that the scalar equations 7.6 define only the magnitudes (A%, A”) of the compo-
nents of acceleration of any point in rotation. In a CASE 1 graphical analysis, the direc-
tions of the vectors due to the centripetal and tangential components of the acceleration
difference must be understood from equation 7.2 to be perpendicular to and along the ra-
dius of rotation, respectively. Thus, if the center of rotation is known or assumed, the di-
rections of the acceleration difference components due to that rotation are known and their
senses will be consistent with the angular velocity ® and angular acceleration o of the
body.

Figure 7-4 shows a fourbar linkage in one particular position. We wish to solve for
the angular accelerations of links 3 and 4 (03, 0i4) and the linear accelerations of points
A, B, and C (A4, Ap, A¢). Point C represents any general point of interest such as a cou-
pler point. The solution method is valid for any point on any link. To solve this problem
we need to know the lengths of all the links, the angular positions of all the links, the
angular velocities of all the links, and the instantaneous input acceleration of any one
driving link or driving point. Assuming that we have designed this linkage, we will know
or can measure the link lengths. We must also first do a complete position and velocity
analysis to find the link angles 63 and 04 and angular velocities 03 and ®4 given the in-
put link’s position 89, input angular velocity ®o, and input acceleration 0tp. This can be
done by any of the methods in Chapters 4 and 6. In general we must solve these problems
in stages, first for link positions, then for velocities, and finally for accelerations. For the
following example, we will assume that a complete position and velocity analysis has
been done and that the input is to link 2 with known 62, ®o, and 0, for this one “freeze-
frame” position of the moving linkage.

ZDEXAMPLE 7-1

rophiccl Acceleration Analysis for One Position of a Fikg.
Problem: Given 05, 03, 8,4, 0, 03, 4, Oy, find 03, 04, Ay, Ap, Apby graphical methods.
Solution: (see Figure 7-4)

1 Start at the end of the linkage about which you have the most information. Calculate the mag-

nitudes of the centripetal and tangential components of acceleration of point A using scalar
equations 7.6.

A% =(40,)03; A} =(A0,)0, (@)
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FIGURE 7-4

Graphical solution for acceleration in a pin-jointed linkage with a negative (CW) o, and a positive (CCW) @,

2 On the linkage diagram, Figure 7-4a, draw the acceleration component vectors A’j and Al
with their lengths equal to their magnitudes at some convenient scale. Place their roots at
point A with their directions respectively along and perpendicular to the radius AO,. The
sense of A is defined by that of o) (according to the right-hand rule), and the sense of Allis
the opposite of that of the position vector R4 as shown in Figure 7-4a.

3 Move next to a point about which you have some information, such as B on link 4. Note that
the directions of the tangential and normal components of acceleration of point B are pre-
dictable since this link is in pure rotation about point Q4. Draw the construction line pp through
point B perpendicular to BO,, to represent the direction of A’y as shown in Figure 7-4a.
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4 Write the acceleration difference vector equation 7.4 for point B versus point A.
Ap=A, +Ap )

Substitute the normal and tangential components for each term:
(AG+A%)=(Ak +A% )+ (A% +ARa) ©

We will use point A as the reference point to find Ag because A is in the same link as B and
we have already solved for qu and A’. Any vector equation can be solved for two un-
knowns. Each term has two parameters, namely magnitude and direction. There are then
potentially twelve unknowns in this equation, two per term. We must know ten of them to
solve it. We know both the magnitudes and directions of A% and A’ and the directions of
A’ and A’y which are along line pp and line BOy, respectively. We can also calculate the
magnitude of Ay from equation 7.6 since we know wy. This provides seven known
values. We need to know three more parameters to solve the equation.

5 The term A, represents the acceleration difference of B with respect to A. This has two com-
ponents. The normal component A’y is directed along the line BA because we are using point
A as the reference center of rotation for the free vector ®s, and its magnitude can be calculated
from equation 7.6. The direction of A’y, must then be perpendicular to the line BA. Draw
construction line gq through point B and perpendicular to BA to represent the direction of
A’z as shown in Figure 7-4a (p. 305). The calculated magnitude and direction of compo-
nent A, and the known direction of A4 provide the needed additional three parameters.

6 Now the vector equation can be solved graphically by drawing a vector diagram as shown in
Figure 7-4b. Either drafting tools or a CAD package is necessary for this step. The strategy is
to first draw all vectors for which we know both magnitude and direction, being careful to ar-
range their senses according to equation 7.4 (p. 302).

First draw acceleration vectors A, and A’} tip to tail, carefully to some scale, maintain-
ing their directions. (They are drawn twice size in the figure.) Note that the sum of these two
components is the vector A4. The equation in step 4 says to add Agy to Ay. We know A%y,
so we can draw that component at the end of A4. We also know A% _but this component is on
the left side of equation 7.4, so we must subtract it. Draw the negative (opposite sense) of A%
at the end of A%,.

This exhausts our supply of components for which we know both magnitude and direc-
tion. Our two remaining knowns are the directions of A’y and A’ which lie along the lines
pp and qg, respectively. Draw a line parallel to line gg across the tip of the vector represent-
ing minus A’;. The resultant, or left side of the equation, must close the vector diagram, from
the tail of the first vector drawn (A 4) to the tip of the last, so draw a line parallel to pp across
the tail of A4. The intersection of these lines parallel to pp and gq defines the lengths of A’
and A%,. The senses of these vectors are determined from reference to equation 7.4. Vec-
tor A, was added to A gy, so their components must be arranged tip to tail. Vector Apis the
resultant, so its component A’ must be from the tail of the first to the tip of the last. The
resultant vectors are shown in Figure 7-4b and d.

7 The angular accelerations of links 3 and 4 can be calculated from equation 7.6:

Oy =
* " Bo, 7 BA
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Note that the acceleration difference term A’y represents the rotational component of accel-
eration of link 3 due to 3. The rotational acceleration o of any body is a “free vector” which
has no particular point of application to the body. It exists everywhere on the body.

8 Finally we can solve for A using equation 7.4 again. We select any point in link 3 for which
we know the absolute velocity to use as the reference, such as point A.

AC=AA +ACA (e)

In this case, we can calculate the magnitude of A{-, from equation 7.6 (p. 304) as we have
already found o,

AE'A = C(Z3 (f )
The magnitude of the component A4 can be found from equation 7.6 using ®3.
AgA =cC 0)% (g )

Since both A4 and A 4 are known, the vector diagram can be directly drawn as shown in Fig-
ure 7-4¢c. Vector A is the resultant which closes the vector diagram. Figure 7-4d shows the
calculated acceleration vectors on the linkage diagram.

The above example contains some interesting and significant principles which de-
serve further emphasis. Equation 7.4 is repeated here for discussion.

Ap=A +Ap
(7.4)

(Ab+A%R)= (AL +A%L)+(ARs +A%4)

This equation represents the absolute acceleration of some general point P referenced to
the origin of the global coordinate system. The right side defines it as the sum of the ab-
solute acceleration of some other reference point 4 in the same system and the accelera-
tion difference (or relative acceleration) of point P versus pointA. These terms are then
further broken down into their normal (centripetal) and tangential components which have
definitions as shown in equation 7.2 (p. 301).

Let us review what was done in Example 7-1 in order to extract the general strategy
for solution of this class of problem. We started at the input side of the mechanism, as
that is where the driving angular acceleration cx2 was defined. We first looked for a point
(A) for which the motion was pure rotation. We then solved for the absolute acceleration
of that point (AA) using equations 7.4 and 7.6 by breaking AA into its normal and tangen-
tial components. (Steps 1and 2)

We then used the point (A) just solved for as a reference point to define the transla-
tion component in equation 7.4 written for a new point (B). Note that we needed to choose
a second point (B) which was in the same rigid body as the reference point (A) which we
had already solved, and about which we could predict some aspect of the new point's
(B's) acceleration components. In this example, we knew the direction of the component
Az though we did not yet know its magnitude. We could also calculate both magnitude
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and direction of the centripetal component, A% since we knew ®3 and the link length.
In general this situation will obtain for any point on a link which is jointed to ground (as
is link 4). In this example, we could not have solved for point C until we solved for B,
because point C is on a floating link for which we do not yet know the angular accelera-
tion or absolute acceleration direction. (Steps 3 and 4)

To solve the equation for the second point (B), we also needed to recognize that the
tangential component of the acceleration difference A%, is always directed perpendicu-
lar to the line connecting the two related points in the link (B and A in the example). In
addition, you will always know the magnitude and direction of the centripetal accelera-
tion components in equation 7.4 if it represents an acceleration difference (CASE 1)
situation. If the two points are in the same rigid body, then that acceleration difference
centripetal component has a magnitude of r&? and is always directed along the line con-
necting the two points, pointing toward the reference point as the center (see Figure 7-2,
p. 302). These observations will be true regardless of the two points selected. But, note
this is not true in a CASE 2 situation as shown in Figure 7-3a (p. 303) where the normal
component of acceleration of auto #2 is not directed along the line connecting points A
and P. (Steps 5 and 6)

Once we found the absolute acceleration (Ap) of a second point on the same link
(CASE 1) we could solve for the angular acceleration of that link. (Note that points A
and B are both on link 3 and the acceleration of point Oy is zero.) Once the angular ac-
celerations of all the links were known, we could solve for the linear acceleration of any
point (such as C) in any link using equation 7.4. To do so, we had to understand the con-
cept of angular acceleration as a free vector, which means that it exists everywhere on
the link at any given instant. It has no particular center. It has an infinity of potential
centers. The link simply has an angular acceleration. 1t is this property that allows us
to solve equation 7.4 for literally any point on a rigid body in complex motion refer-
enced to any other point on that body. (Steps 7 and 8)

7.3  ANALYTICAL SOLUTIONS FOR ACCELERATION ANALYSIS

The Fourbar Pin-Jointed Linkage

The position equations for the fourbar pin-jointed linkage were derived in Section 4.5
(p. 152). The linkage was shown in Figure 4-7 and is shown again in Figure 7-5a on which
we also show an input angular acceleration o, applied to link 2. This input angular accel-
eration oy may vary with time. The vector loop equation was shown in equations 4.5a
and c, repeated here for your convenience.

R,+R;-R;-R; =0 (4.52)

As before, we substitute the complex number notation for the vectors, denoting their
scalar lengths as a, b, ¢, d as shown in Figure 7-5.

aeje2 +beje3 _Ceje4 _dejel =0 (4.5¢)

In Section 6.7 (p. 271), we differentiated equation 4.5c versus time to get an expres-
sion for velocity which is repeated here.
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Position vector loop for a fourbar linkage showing acceleration vectors

jaw,e’? + jbse’ — jew et =0 (6.14c)
2 3 J 4

We will now differentiate equation 6.14c versus time to obtain an expression for
accelerations in the linkage. Each term in equation 6.14c contains two functions of time,
0 and . Differentiating with the chain rule in this example will result in two terms in
the acceleration expression for each term in the velocity equation.

(/%03 2 + jaai, €2 )+(j2bco§ e/ + jpos % )~(jPewf e + jeay e )=0 @72
Simplifying and grouping terms:
(actz je?2 —aw} €2 )+ (bay je’ —bw} e/ )= (caq jel®s —cw e =0 @)

Compare the terms grouped in parentheses with equations 7.2 (p. 301). Equation 7.7
contains the tangential and normal components of the accelerations of points A and B and
of the acceleration difference of B to A. Note that these are the same relationships which
we used to solve this problem graphically in Section 7.2 (p. 303). Equation 7.7 is, in fact,
the acceleration difference equation 7.4 which, with the labels used here, is:

A +Ap —Ap=0 (7.8a)
where:
Ay =(Af4 +A2)= (aoc2 jej92 —a(o% /92 )
Aga = (A% + A% ) =(b0s je - b} o) (7.8b)

Ap

(AtB +A'§) = (coc4 jeje4 —cw% /04 )
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The vector diagram in Figure 7-5b (p. 309) shows these components and is a graph-
ical solution to equation 7.8a. The vector components are also shown acting at their re-
spective points on Figure 7-5a.

We now need to solve equation 7.7 for o3 and 0y, knowing the input angular accel-
eration Oy, the link lengths, all link angles, and angular velocities. Thus, the posi-
tion analysis derived in Section 4.5 (p. 152) and the velocity analysis from Section
6.7 (p. 271) must be done first to determine the link angles and angular velocities
before this acceleration analysis can be completed. We wish to solve equation 7.8
to get expressions in this form:

O3 =f((l,b,C,d,62,63,e4,0)2,(1)3,0)4,(12) (7.9a)

Oy =g(a,b,c,d,62,63,64,(02,0)3,(n4,a2) (79b)

The strategy of solution will be the same as was done for the position and velocity
analysis. First, substitute the Euler identity from equation 4.4a in each term of equation
7.7:

[aocz J(cos8, + jsin®, ) —aw} (cosO, + jsin@, )]
+[bots j(cos0 + jsin; )~ b3 (cos6; + jsins )| (7.10a)

—[cot4 Jj(cos8y +jsin®4)—coj (cosy +jsin(-)4)]=0
Multiply by the operator j and rearrange:
[a(x2 (=sin@, + jcos8, )~ aw3 (cosH, + jsin 92)]
+ [bot3 (—sin93 +jcos93)—b0)§ (cos63 +jsin93)] (7.10b)
- [ca4 (~sinBy + jcos, ) —cwi (cosO, + jsinBy )] =0

We can now separate this vector equation into its two components by collecting all
real and all imaginary terms separately:

real part (x component):
—aol, sin0, —am% cosB, ~boiysinBy — bm% cos03 +cl,sinBy +cmﬁ cosB, =0 (7.11a)
imaginary part ('y component):
ac., cos9, —a(o% sinB, + b3 cosOy —bw% sinB; —cou cosBy +c0)42t sin6, =0 (7.11b)

Note that the j’s have cancelled in equation 7.11b. We can solve equations 7.11a and
7.11b simultaneously to get:

o3 :M (7.122)
AE—BD

oy = SEZBE (7.12b)
AE - BD :

where:
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A=csinb,

B=bsin0;

C = aq, sinB, + aw3 cosh, +bm? cosB; — cw? cosO,

D=ccos0, (7.12¢)
E=bcosb;

F =aa, cos0, —a(o% sin 6, ~bm§ sinB3 +cwﬁ sinB,

Once we have solved for o3 and 04, we can then solve for the linear accelerations
by substituting the Euler identity into equations 7.8b,

A4 = a0, (~sin8, + jcos8, )~ aw3 (cosh, + jsin6, ) (7.13a)
Apy=bogs (—sin63 +jc0s93)—b0)§ (cose3 +jsin63) (7.13b)
Ap=coy (—sin64 +jcos64)—-ca)ﬁ (cos94 +jsin®,) (7.13¢)

where the real and imaginary terms are the x and y components, respectively. Equations
7.12 and 7.13 provide a complete solution for the angular accelerations of the links and
the linear accelerations of the joints in the pin-jointed fourbar linkage.

The Fourbar Slider-Crank

The first inversion of the offset slider-crank has its slider block sliding against the ground
plane as shown in Figure 7-6a. Its accelerations can be solved for in similar manner as
was done for the pin-jointed fourbar.

The position equations for the fourbar offset slider-crank linkage (inversion #1) were
derived in Section 4.6 (p. 159). The linkage was shown in Figures 4-9 (p. 160) and 6-21
(p. 275) and is shown again in Figure 7-6a on which we also show an input angular accel-
eration o applied to link 2. This o can be a time-varying input acceleration. The vector
loop equation 4.14 is repeated here for your convenience.

Rz*R3—R4—RI =0 (414&)

ae®® —pel® — e —ge =g (4.14b)

In Section 6.7 (p. 267) we differentiated equation 4.14b with respect to time noting
that a, b, ¢, 81, and 04 are constant but the length of link d varies with time in this inver-
sion.

jaw,e?®? — jbwyye’® —d=0 (6.20a)

The term d dot is the linear velocity of the slider block. Equation 6.20a is the veloc-
ity difference equation.

‘We now will differentiate equation 6.20a with respect to time to get an expression for
acceleration in this inversion of the slider-crank mechanism.

(Jaase®2 + 2aw3e )~ (jpase® + 2bwie’® )-d =0 (7.14a)
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Simplifying:
@azpﬁ2—am%ﬁzy{ba&kﬁS—bm%d%)—&=o (7.14b)
Note that equation 7.14 is again the acceleration difference equation:

AA_AAB_AB =0
Ags=—Aup (7.152)
Ap=A +Ap,

Ay= (Af‘x +AZ) = (a(x2 je’®2 —ab3 /%2 )
Am=@a+A&Fﬁmﬂd%—mﬁdh) (7.15b)
Ap=A%=d

Note that in this mechanism, link 4 is in pure translation and so has zero w4 and zero
oy. The acceleration of link 4 has only a “tangential” component of acceleration along its
path.

The two unknowns in the vector equation 7.14 are the angular acceleration of link 3,
o3 and the linear acceleration of link 4, d double dot. To solve for them, substitute the
Euler identity,

aol, (—sin62 +jcos62)—aw%(cosez +jsin92)

—bogs (—sin03 +jcose3)+b(o§ (cose3 +jsin03)—d =0 (7.16a)
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and separate the real (x) and imaginary ( y) components:
real part (x component):
—ao; sin6, —am% €080, +bai3sin b, +b(o§ cos0; -d=0 (7.16b)
imaginary part ( y component):
a0ty c0s8, —aw} sind, — boiy cosBy +bw sind; =0 (7.16¢)

Equation 7.16¢ can be solved directly for a3 and the result substituted in equation
7.16b to find d double dot.

_ anycost, —am% sin6, +ba)§ sin03

3 (7.16d)

bcosB;

d=—-ao,sin0, —aw? cosB, + b sinB; + b3 cosd; (7.16¢)

The other linear accelerations can be found from equation 7.15b and are shown in the
vector diagram of Figure 7-6b.

Coriolis Acceleration

The examples used for acceleration analysis above have involved only pin-jointed link-
ages or the inversion of the slider-crank in which the slider block has no rotation. When
a sliding joint is present on a rotating link, an additional component of acceleration will
be present, called the Coriolis component, after its discoverer. Figure 7-7a shows a sim-
ple, two-link system consisting of a link with a radial slot, and a slider block free to slip
within that slot.

The instantaneous location of the block is defined by a position vector (Rp) refer-
enced to the global origin at the link center. This vector is both rotating and changing
length as the system moves. As shown this is a two-degree-of-freedom system. The two
inputs to the system are the angular acceleration (o) of the link and the relative linear
slip velocity (Vpg;) of the block versus the disk. The angular velocity o is a result of
the time history of the angular acceleration. The situation shown, with a counterclock-
wise o and a clockwise , implies that earlier in time the link had been accelerated up to
a clockwise angular velocity and is now being slowed down. The transmission compo-
nent of velocity (Vp,,,..) is a result of the ® of the link acting at the radius Rp whose
magnitude is p.

We show the situation in Figure 7-7 at one instant of time. However, the equations to
be derived will be valid for all time. We want to determine the acceleration at the center
of the block (P) under this combined motion of rotation and sliding. To do so we first
write the expression for the position vector Rp which locates point P.

R, = pe’®2 (717

Note that there are two functions of time in equation 7.17, p and 6. When we differ-
entiate versus time we get two terms in the velocity expression:

Vp = p, je’®2 + pel®2 (7.18a)
P 2




FIGURE 7-7

Te Coriolis component of acceleration shown in a system with a positive (CCW) o, and a negative (CW) o,
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These are the transmission component and the slip component of velocity.

(7.18b)

VP = VPIrans . VP slip
The pw term is the transmission component and is directed at 90 degrees to the axis
of slip which, in this example, is coincident with the position vector Rp. The p dof term
is the slip component and is directed along the axis of slip in the same direction as the
position vector in this example. Their vector sum is Vp as shown in Figure 7-7a.

To get an expression for acceleration, we must differentiate equation 7.18 versus
time. Note that the transmission component has three functions of time in it, p, ®, and 6.
The chain rule will yield three terms for this one t¢rm. The slip component of velocity
contains two functions of time, p and 9, yielding two terms in the derivative for a total of
five terms, two of which turn out to be the same.

Ap= (pazjeje2 + pw3j2e™2 + po, je’®2 )+ (P(Ozjejez + pel®? ) (7.192)
Simplifying and collecting terms:
Ap = pa,y je’® — pwle’® +2pw, je/®? + pel®? (7.19b)
These terms represent the following components:
Ap= APtangemial p APnormal + APcorialis o+ APslip (7.19¢)

Note that the Coriolis term has appeared in the acceleration expression as a result of
the differentiation simply because the length of the vector p is a function of time. The
Coriolis component magnitude is twice the product of the velocity of slip (equation 7.18)
and the angular velocity of the link containing the slider slot. Its direction is rotated 90
degrees from that of the original position vector Rp either clockwise or counterclockwise
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depending on the sense of 0). (Note that we chose to align the position vector Rp with the
axis of slip in Figure 7-7 which can always be done regardless of the location of the cen-
ter of rotation-also  see Figure 7-6 (p. 312) where RJ is aligned with the axis of slip.) All
four components from equation 7.19 are shown acting on point P in Figure 7-7b. The total
acceleration Ap is the vector sum of the four terms as shown in Figure 7-7c. Note that
the normal acceleration term in equation 7.19b is negative in sign, so it becomes a sub-
traction when substituted in equation 7.19c.

This Coriolis component of acceleration will always be present when there is a ve-
locity of slip associated with any member which also has an angular velocity. In the
absence of either of those two factors the Coriolis component will be zero. You have prob-
ably experienced Coriolis acceleration if you have ever ridden on a carousel or merry-go-
round. If you attempted to walk radially from the outside to the inside (or vice versa)
while the carousel was turning, you were thrown sideways by the inertial force due to the
Coriolis acceleration. You were the slider block in Figure 7-7, and your slip velocity com-
bined with the rotation of the carousel created the Coriolis component. As you walked
from a large radius to a smaller one, your tangential velocity had to change to match that
of the new location of your foot on the spinning carousel. Any change in velocity re-
quires an acceleration to accomplish. It was the "ghost of Coriolis" that pushed you side-
ways on that carousel.

Another example of the Coriolis component is its effect on weather systems. Large
objects which exist in the earth's lower atmosphere, such as hurricanes, span enough area
to be subject to significantly different velocities at their northern and southern extremi-
ties. The atmosphere turns with the earth. The earth's surface tangential velocity due to
its angular velocity varies from zero at the poles to a maximum of about 1000 mph at the
equator. The winds of a storm system are attracted toward the low pressure at its center.
These winds have a slip velocity with respect to the surface, which in combination with
the earth's 0), creates a Coriolis component of acceleration on the moving air masses. This
Coriolis acceleration causes the inrushing air to rotate about the center, or "eye" of the
storm system. This rotation will be counterclockwise in the northei-n hemisphere and
clockwise in the southern hemisphere. The movement of the entire storm system from
south to north also creates a Coriolis component which will tend to deviate the storm's
track eastward, though this effect is often overridden by the forces due to other large air
masses such as high-pressure systems which can deflect a storm. These complicated fac-
tors make it difficult to predict a large storm's true track.

Note that in the analytical solution presented here, the Coriolis component will be ac-
counted for automatically as long as the differentiations are correctly done. However,
when doing a graphical acceleration analysis one must be on the alert to recognize the
presence of this component, calculate it, and include it in the vector diagrams when its
two constituents Fjp and o) are both nonzero.

The Fourbar Inverted Slider-Crank

The position equations for the fourbar inverted slider-crank linkage were derived in Sec-
tion 4.7 (p. 159). The linkage was shown in Figures 4-10 (p. 162) and 6-22 (p. 277) and
is shown again in Figure 7-8a on which we also show an input angular acceleration a2
applied to link 2. This a2 can vary with time. The vector loop equations 4.14 (p. 311) are
valid for this linkage as well.
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All slider linkages will have at least one link whose effective length between joints
varies as the linkage moves. In this inversion the length of link 3 between points A and
B, designated as b, will change as it passes through the slider block on link 4. In Section
6.7 (p. 267) we got an expression for velocity, by differentiating equation 4.14b with re-
spect to time noting that a, ¢, d, and 0 are constant and b varies with time.

jaw,e’® — jbwye’® —he’®s — jew e/ =0 (6.24)

Differentiating this with respect to time will give an expression for accelerations in this
inversion of the slider-crank mechanism.

(ja(xzeje2 +j%amie’? )—(jboc3ej93 +j2b(1)§ej93 +jl;(o3ej93)
- (l;eje3 +jbw3eje3 )—- (jca4eje4 +jzcw%eje4 )= 0 (7.20a)
Simplifying and collecting terms:
(aocz je’® —amle’® )—(boc3 jel® ~bwie® +2b0, jel% +I;ej93)
~ (coy je™s —cwie’®s)=0 (7.20b)

Equation 7.20 is in fact the acceleration difference equation (equation 7.4, p. 302) and
can be written in that notation as shown in equation 7.21.

Ays-Ap—Ag=0

but: Apa=-Aup (7.21a)
and: Ap=A, +Apy
AA = AAtangential +AAnarmal
AAB = AABtangential +AABnormal +AABcorioli: i AAleip (721b)
AB = ABtangential + ABnormal
= L) 2, 92
Atangential agy.Je AAnomual a®sze
— -, 704 me o2 50
Btangential € a4 Je A Bhormal C(‘O4e
- 1593 283
ABtangential b O3 je AABnormal b w3e (7210)
o ) i 8
AABcoriolis - 2b0)3 Je ’ AABsh-p =be’”3

Because this sliding link also has an angular velocity, there will be a nonzero Corio-
lis component of acceleration at point B which is the 2 b dot term in equation 7.20. Since
a complete velocity analysis was done before doing this acceleration analysis, the Cori-
olis component can be readily calculated at this point, knowing both  and Viip from the
velocity analysis.

The b double dot term in equation 7.21a is the slip component of acceleration. This
is one of the variables to be solved for in this acceleration analysis. Another variable to
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be solved for is o4, the angular acceleration of link 4. Note, however, that we also have
an unknown in ¢, the angular acceleration of link 3. This is a total of three unknowns.
Equation 7.20 can only be solved for two unknowns. Thus we require another equation
to solve the system. There is a fixed relationship between angles 64 and 6,, shown as Y
in Figure 7-8 and defined in equation 4.18, repeated here:

93204 i'Y (418)
Differentiate it twice with respect to time to obtain:
W3 =Wy; O3 =0y (7.22)

We wish to solve equation 7.20 to get expressions in this form:

Q3 =00y =f(a, b, l;, ¢ d, 92,93, 94,(02,(1)3,(1)4, az) (7233)
d* - .
:1t—2-=b=g(a, b,b,c, d,92,93,94,0)2,0)3,(n4,a2) (7.23b)

Substitution of the Euler identity (equation 4.4a, p. 155) into equation 7.20 yields:

aoly j(cos92 +jsin62)—am%(cos62 +jsin92)
-bogj j(cos93 +jsin93)+bo)§(cos63 +jsin63)

~2bw, j(cosO3 +jsin93)—b(cose3 +jsin93) (7.24a)

~cay j(cosBy + jsin@ ) +cmi(cosB, + jsinBy) =0
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Multiply by the operator j and substitute o, for 0, from equation 7.22:
a,y (—sin92 +jc0592)—a(0%(cosez +jsin92)
—boy (—sin®; + jcosB3 ) +bw3(cosd; + jsinB;)
—2bw;(-sin®; + jcosB;)— b(cosB; + jsinBs) (7.24b)

—CcOly (—sin94 +jcose4)+c(o‘2;(cose4 +jsinB,)=0

We can now separate this vector equation 7.24b into its two components by collect-
ing all real and all imaginary terms separately:

real part (x component):

—ao,sinB, —am% cos0, + bty sinB; +b0)§ cos 03

+2b035in03 —bcosBs +c0ly sind, +c 03 cosBy =0 (7.25a)
imaginary part (y component):

ao, cos6, —am% sinB, —bouy cosO; +bw§ sinB3

—2b®3 cos8;3 —bsinB3 — c 0Ly cosO, +c @3 sinBy =0 (7.25b)

Note that the j’s have cancelled in equation 7.25b. We can solve equations 7.25 si-
multaneously for the two unknowns, 0,4 and b double dot. The solution is:

a[a2c05(63 -0, ) + m%sin(93 -0, )] + c(oi sin(64 = 93)— ZB(D3

= .2
i b+ccos(63 —94) (7.262)
aw% [bcos(93 -0, ) + ccos(94 -0, )] +at., [b sin(92 — 63) - csin(94 +0, )]
. +26c0)4 sin(64 —63)—(0%[b2 +c2 +2bccos(94 —(-)3)]
b=- (7.26b)

b+ccos(93 -8,)

Equation 7.26a provides the angular acceleration of link 4. Equation 7.26b provides
the acceleration of slip at point B. Once these variables are solved for, the linear acceler-
ations at points A and B in the linkage of Figure 7-8 (p. 317) can be found by substituting
the Euler identity into equations 7.21.

A, =a0, (—sin92 +jcose2)—a0)% (c0s92 +jsin62) (7.27a)
Aps =boy (sin63 —jcos03)+bm§ (00563 +jsin63)

+2b®; (5in@3 — jcosO3 ) — b(cosB3 + jsinO3) (7.27b)

Ap=—coy(sinf, —jcos64)—ca)§ (cos04 +jsinBy) (7.27¢)

These components of these vectors are shown in Figure 7-8b.
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7.4  ACCELERATION ANALYSIS OF THE GEARED FIVEBAR
LINKAGE

The velocity equation for the geared fivebar mechanism was derived in Section 6.8 (p-
317) and is repeated here. See Figure P7-4 (p. 331) for notation.

aw,je’®? +bwyje’® —coyje® —dmsjel®s =0 (6.322)

Differentiate this with respect to time to get an expression for acceleration.
(aozzjeje2 —aw3e® ) + (b(x3jeje3 - b(o%eje3 )
~(coyje’® —coles )-(d0sje’s ~dwdess )=0 (7.28a)

Substitute the Euler equivalents:

aa,(-sin, + jcos8,) - aw3(cosd, + jsin®, )
+bouy(—sin6; +jcos63)—b(o§(cose3 +jsin@s)
~coy(—sinBy + jcos8, ) +coj(coso, +jsindy)
= dots(~sin@s + jcoss )+ d w3 (coss + jsinBs) =0 (7.28b)
Note that the angle 05 is defined in terms of ,, the gear ratio A, and the phase angle ¢.
This relationship and its derivatives are:
05 =40, +0; 05 = Ao, o5 = Aoy (7.28¢)

Since a complete position and velocity analysis must be done before an acceleration
analysis, we will assume that the values of 85 and ws have been found and will leave these
equations in terms of 65, s, and os.

Separating the real and imaginary terms in equation 7.28b:
real:
~ady sin92 —aw% COSGZ —boc3 sin93 —b(D% COSG3
+colysinB, +cm‘2¢ cos0, +dogsinBs +d(o§ cosB5 =0 (7.28d)
imaginary:
a0, cos8, —aw3 sin@, +boi; cos8; —bw3 sind;
— 0y cos0y +c(s)‘2¢ sin@, —d o5 cosBs + d(n% sinB5 =0 (7.28¢e)

The only two unknowns are 03 and 4. Either equation 7.28d or 7.28¢ can be solved
for one unknown and the result substituted in the other. The solution for o3 is:
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—ao,) sin(02 - 64) — a(o% cos(8; — 94)
— bw3 cos(83 —8, ) + dw3 cos(Bs —0,)

+doig sin(95 —64)+cu)42t

= 7.29
“3 bsin(6, - 0,) (7:292)
and angle 04 is:
aol, sin(62 —93)+ aw%cos(ez = 93)
- cwﬁcos(63 & 94)— dwgcos(93 - 95)
%+ das sin(93 — 95)+ bw%
oy = (7.29b)

csin(94 —93)

With all link angles, angular velocities, and angular accelerations known, the linear
accelerations for the pin joints can be found from:

Ay =ao, (—sin 0, +jc0362)—a(0% (cosG2 +jsin92) (7.29¢)
Aps = bos(—sinB; + jcos8; )~ bw3 (cosBs + jsin6;) (7.294d)
A =cos(~sinBs + jcos8s)—cw? (cos8s + jsin6s) (7.2%)
Ap=AstAp, (7.29¢)

7.5  ACCELERATION OF ANY POINT ON A LINKAGE

Once the angular accelerations of all the links are found it is easy to define and calculate
the acceleration of any point on any link for any input position of the linkage. Figure 7-9
shows the fourbar linkage with its coupler, link 3, enlarged to contain a coupler point P.
The crank and rocker have also been enlarged to show points S and U which might repre-
sent the centers of gravity of those links. We want to develop algebraic expressions for
the accelerations of these (or any) points on the links.

To find the acceleration of point S, draw the position vector from the fixed pivot O;
to point S. This vector Rgp, makes an angle &, with the vector Ry0,. This angle &, is
completely defined by the geometry of link 2 and is constant. The position vector for point
S is then:

Rgo, =Rg = sel(®2+82) _ s[cos(62 +8,)+ jsin(0, + 82)] (4.25)

We differentiated this position vector in Section 6.9 (p. 279) to find the velocity of
that point. The equation is repeated here for your convenience.

Vg = jse/(B2+82 )a)2 =sw, [—sin(62 +8, )+ jcos(; +8, )] (6.34)

We can differentiate again versus time to find the acceleration of point S.
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AS = s(xzjej(ez +82) —S(D% ej(92+52)
=50 [‘Sin(ez +8,)+ jcos(8, +82)] (7.30)
- sw3 [cos(ez +8,)+ jsin(0, +82)]

The position of point U on link 4 is found in the same way, using the angle 84 which
is a constant angular offset within the link. The expression is:

RU04 B uej(e4 +84) = M[COS(94 + 84)+jsin(64 +64)] (4.26)

We differentiated this position vector in Section 6.9 to find the velocity of that point.
The equation is repeated here for your convenience.

Vy = juej(94 +34 J(;)4 = um4[—sin(94 +8,)+ jeos(B, + 84)] (6.35)
We can differentiate again versus time to find the acceleration of point U.
AU =uoly jej(e4 +84) — u(!)ﬁ ej(e4 +84)
= oty [—sin(04 +84)+ jcos(6, +3,)] (7.31)
- umi [008(64 + 84) +jsin(64 + 64)]

The acceleration of point P on link 3 can be found from the addition of two acceler-
ation vectors, such as A4 and A ps. Vector Ay is already defined from our analysis of the
link accelerations. Apy is the acceleration difference of point P with respect to point A.
Point A is chosen as the reference point because angle 0 is defined at a local coordi-
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nate system whose origin is at A. Position vector Rpy4 is defined in the same way as
Ry or Ry, using the internal link offset angle 85 and the angle of link 3, 63. We previous-
ly analyzed this position vector and differentiated it in Section 6.9 to find the velocity
difference of that point with respect to point A. Those equations are repeated here for
your convenience.

Ry, = pel(83+93) = plcos(6; +85)+ jsin(93v+ 33)] (4.27a)
Rp =R, +Rpy (4.27b)
Vp, = jpel(®3 +83)g, = pa)3[—sin(63 +83)+ jcos(6; +83)] (6.36a)
Vp =V, +Vp, (6.36b)

We can differentiate equation 6.36 again versus time to find A p4, the acceleration of
point P versus A. This vector can then be added to the vector A4 already found to define
the absolute acceleration A p of point P.

Ap=A,+Ap, (7.32a)
where:
Aps = po, jej(es +83) - po} £/(83+83)
= pois[—sin(8; +83) + jcos(8; +3;))| (7.32b)

- po3 [cos(93 +53)+jsin(93 +83)]

Please compare equation 7.32 with equation 7.4 (p. 302). It is again the accelera-
tion difference equation. Note that this equation applies to any peint on any link at any
position for which the positions and velocities are defined. It is a general solution for
any rigid body.

7.6 HUMAN TOLERANCE OF ACCELERATION

It is interesting to note that the human body does not sense velocity, except with the eyes,
but is very sensitive to acceleration. Riding in an automobile, in the daylight, one can
see the scenery passing by and have a sense of motion. But, traveling at night in a com-
mercial airliner at a 500 mph constant velocity, we have no sensation of motion as long
as the flight is smooth. What we will sense in this situation is any change in velocity due
to atmospheric turbulence, takeoffs, or landings. The semicircular canals in the inner ear
are sensitive accelerometers which report to us on any accelerations which we experi-
ence. You have no doubt also experienced the sensation of acceleration when riding
in an elevator and starting, stopping, or turning in an automobile. Accelerations pro-
duce dynamic forces on physical systems, as expressed in Newton's second law,
F=ma. Force is proportional to acceleration, for a constant mass. The dynamic forces
produced within the human body in response to acceleration can be harmful if excessive.
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The human body is, after all, not rigid. It is a loosely coupled bag of water and tissue,
most of which is quite internally mobile. Accelerations in the headward or footward direc-
tions will tend to either starve or flood the brain with blood as this liquid responds to New-
ton's law and effectively moves within the body in a direction opposite to the imposed accel-
eration as it lags the motion of the skeleton. Lack of blood supply to the brain causes black-
out; excess blood supply causes redout. Either results in death if sustained for a long enough
period.

A great deal of research has been done, largely by the military and NASA, to deter-
mine the limits of human tolerance to sustained accelerations in various directions. Fig-
ure 7-10 shows data developed from such tests. [1] The units of linear acceleration were
defined in Table 1-4 (p. 19) as inlsec2, ft/sec?, or m/sec2. Another common unit for ac-
celeration is the g, defined as the acceleration due to gravity, which on Earth at sea level is
approximately 386 inlsec2, 32.2 ftJsec?, or 9.8 m/sec2. The g is a very convenient unit to
use for accelerations involving the human as we live in a 1g environment. Our weight,
felt on our feet or buttocks, is defined by our mass times the acceleration due to gravity
or mg. Thus an imposed acceleration of 1 g above the baseline of our gravity, or 2 g's,
will be felt as a doubling of our weight. At 6 g's we would feel six times as heavy as
normal and would have great difficulty even moving our arms against that acceleration.
Figure 7-10 shows that the body's tolerance of acceleration is a function of its direction
versus the body, its magnitude, and its duration. Note also that the data used for this chart
were developed from tests on young, healthy military personnel in prime physical con-
dition. The general population, children and elderly in particular, should not be expected
to be able to withstand such high levels of acceleration. Since much machinery is de-
signed for human use, these acceleration tolerance data should be of great interest and
value to the machine designer. Several references dealing with these human factors data
are provided in the bibliography to Chapter 1 (p. 20).

Another useful benchmark when designing machinery for human occupation is to
attempt to relate the magnitudes of accelerations which you commonly experience to the
calculated values for your potential design. Table 7-1 lists some approximate levels of
acceleration, in g's, which humans can experience in everyday life. Your own experience
of these will help you develop a "feel" for the values of acceleration which you encounter
in designing machinery intended for human occupation.

Note that machinery which does not carry humans is limited in its acceleration lev-
els only by considerations of the stresses in its parts. These stresses are often generated
in large part by the dynamic forces due to accelerations. The range of acceleration values
in such machinery is so wide that it is not possible to comprehensively define any guide-
lines for the designer as to acceptable or unacceptable levels of acceleration. If the mov-
ing mass is small, then very large numerical values of acceleration are reasonable. If the
mass is large, the dynamic stresses which the materials can sustain may limit the allow-
able accelerations to low values. Unfortunately, the designer does not usually know how
much acceleration is too much in a design until completing it to the point of calculating
stresses in the parts. This usually requires a fairly complete and detailed design. If the
stresses turn out to be too high and are due to dynamic forces, then the only recourse is
to iterate back through the design process and reduce the accelerations and or masses in
the design. This is one reason that the design process is a circular and not a linear one.
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(Adapted from reference [ 1], Fig. 17-17, p. 505, reprinted with permission)

FIGURE 7-10
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As one point of reference, the acceleration of the piston in a small, four-cylinder
economy car engine (about 1.5L displacement) atidle speed is about 40 g's. At highway
speeds the piston acceleration may be as high as 700 g's. At the engine's top speed of
6000 rpm the peak piston acceleration is 2000 g's/ As long as you're not riding on the
piston, this is acceptable. These engines last a long time in spite of the high accelerations
they experience. One key factor is the choice of low-mass, high-strength materials for
the moving parts to both keep the dynamic forces down at these high accelerations and
to enable them to tolerate high stresses.

1.7 JERK

No, not you! The time derivative of acceleration is called jerk, pulse, or shock. The
name is apt, as it conjures the proper image of this phenomenon. Jerk is the time rate of
change of acceleration. Force is proportional to acceleration. Rapidly changing accel-
eration means a rapidly changing force. Rapidly changing forces tend to "jerk" the ob-
ject about! You have probably experienced this phenomenon when riding in an automo-
bile. If the driver is inclined to 'jackrabbit" starts and accelerates violently away from
the traffic light, you will suffer from large jerk because your acceleration will go from zero
to a large value quite suddenly. But, when Jeeves, the chauffeur, is driving the Rolls, he
always attempts to minimize jerk by accelerating gently and smoothly, so that Madame
is entirely unaware of the change.
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ommon Values of Acceleration in Human Activities

ABLE 7-1
Gentle acceleration in an automobile 01g
Jet aircraft on takeoff 03g
Hard acceleration in an automobile 05¢g
Panic stop in an automobile 07¢g
Fast cornering in an automobile 08¢g
Roller coaster 35¢g
F-16 Air Force jet 90g

Controlling and minimizing jerk in machine design is often of interest, especially if
low vibration is desired. Large magnitudes of jerk will tend to excite the natural frequen-
cies of vibration of the machine or structure to which it is attached and cause increased
vibration and noise levels. Jerk control is of greater interest in the design of cams than of
linkages, and we will investigate it in more detail in Chapter 8 on cam design.

The procedure for calculating the jerk in a linkage is a straightforward extension of
the methods shown for acceleration analysis. Let angular jerk be represented by:

_do

= 7.33
) @ (7.33a)
and linear jerk by:
=8 (7.33b)
dt

To solve for jerk in a fourbar linkage, for example, the vector loop equation for ac-
celeration (equation 7.7) is differentiated versus time. Refer to Figure 7-5 (p. 309) for no-
tation.

—a(n%jeja2 —2a(1)2a2ej62 +a(x2m2jzeje2 +a(p2jej92
— b3 je’® —2b050367% +bai303/2¢/% + b je ¥ (7.34a)
+ cwijeje“ + 2ca)4(x4eje4 —c(x4(n4j2eje4 —c(p4jej64 =0
Collect terms and simplify:
—a0} je'%? ~3a0,0,6°? +ag, je®2
- b3 je’® —3bw;03e%% + b jel®
+c0}je’® +3cw40467% —c@qje’® =0 (7.34b)
Substitute the Euler identity and separate into x and y components:
real part (x component):
a(l)% Sin92 e 3(1(1)2(12 COSGZ —ag, sin 92
+ bmg sin63 —3b(l)3a3 COSG3 = b(p3 sin 93

— o3 $inB, +3cw4004 COSO, +cQysinB, =0 (7.35a)
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imaginary part (y component):

—a®3 cos 0, —3aw,0, sin, +a@, coso,
— b(og cos83 —3bw30.3 5in 03 + b3 cos B3
+ ¢35 cosBy +3cm 01, 5in04 — c@y cosBy =0 (7.35b)
These can be solved simultaneously for ¢, and ¢, which are the only unknowns. The
driving angular jerk, @,, if nonzero, must be known in order to solve the system. All the
other factors in equations 7.35 are defined or have been calculated from the position, ve-

locity, and acceleration analyses. To simplify these expressions we will set the known
terms to temporary constants.

In equation 7.35a, let:

A=a}sin®, D=bw3sin6; G =3cm4 04 cos0y
B=3am,0, cosB, E =3bw;0t3 cos03 H=csinB, (7.36a)
C=ap,sind, F=co)sind, K = bsin®,

Equation 7.35a then reduces to:

_A-B-C+D-E-F+G+Hg,
- K

VK] (7.36b)

Note that equation 7.36b defines angle @, in terms of angle ¢,. We will now simpli-
fy equation 7.35b and substitute equation 7.36b into it.

In equation 7.35b, let:

L=a0)% cos9, P=b0)§ cos8; S=ca)i cosfy
M= 300)2(12 sin 92 Q= 3b(03(13 sin93 T = 3C(D4(X4 Sin94 (7.37a)
N =a@p, cos0, R=bcosO; U=ccosby

Equation 7.35b then reduces to:
Ry —UQ,—~L-M+N—-P-Q+S+T=0 (1.37b)

Substituting equation 7.36b in equation 7.35b:

R(A—B—C+D—E—F+G+H(p4

X )—U(p4—L—M+N—P—Q+S+T=0 (7.38)
The solution is:

_ KN —KL- KM - KP- KQ+AR— BR—CR+DR- ER—- FR+GR+ KS+ KT
KU-HR

i (1.39)

The result from equation 7.39 can be substituted into equation 7.36b to find @,. Once
the angular jerk values are found, the linear jerk at the pin joints can be found from:
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Ja =—au)%jej92 —3a(1)20c2ej92 +a(p2jej92
J g4 = —bo3 je’®3 —3b0;003¢7%3 + b je’® (7.40)

Jp= —c(oijeje“ —360)40L4ej64 +(:(p4jej94 =0

The same approach as used in Section 7.4 (p. 319) to find the acceleration of any point
on any link can be used to find the linear jerk at any point.

JP=JA+JPA (7.41)

The jerk difference equation 7.41 can be applied to any point on any link if we let P
represent any arbitrary point on any link and A represent any reference point on the same
link for which we know the value of the jerk vector. Note that if you substitute equations
7.40 into 7.41, you will get equation 7.34.

7.8  LINKAGES OF N BARS

The same analysis techniques presented here for position, velocity, acceleration, and jerk,
using the fourbar and fivebar linkage as the examples, can be extended to more complex
assemblies of links. Multiple vector loop equations can be written around a linkage of
arbitrary complexity. The resulting vector equations can be differentiated and solved si-
multaneously for the variables of interest. In some cases, the solution will require simul-
taneous solution of a set of nonlinear equations. A root-finding algorithm such as the
Newton-Raphson method will be needed to solve these more complicated cases. A com-
puter is necessary. An equation solver software package such as TKSolver or Mathcad
that will do an iterative root-finding solution will be a useful aid to the solution of any of
these analysis problems, including the examples shown here.

1 Sanders, M. S., and E. J. McCormick, Human Factors in Engineering and Design,
6th ed., McGraw-Hill Co., New York, 1987, p. 505.
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7-1 A point at a 6.5-in radius is on a body which is in pure rotation with @ = 100 rad/sec
and a constant o, = —500 rad/sec? at point A. The rotation center is at the origin of a
coordinate system. When the point is at position 4, its position vector makes a 45°
angle with the X axis. It takes 0.01 sec to reach point B. Draw this system to some
convenient scale, calculate the 8 and ® of position B, and:

a.  Write an expression for the particle’s acceleration vector in position A using com-
plex number notation, in both polar and cartesian forms.

b.  Write an expression for the particle’s acceleration vector in position B using com-
plex number notation, in both polar and cartesian forms.

c.  Write a vector equation for the acceleration difference between points B and A.
Substitute the complex number notation for the vectors in this equation and solve
for the acceleration difference numerically.

d.  Check the result of part ¢ with a graphical method.




