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11.0  INTRODUCTION

When kinematic synthesis and analysis have been used to define a geometry and set of
motions for a particular design task, it is logical and convenient to then use a kinetostat-
ic, or inverse dynamics, solution to determine the forces and torques in the system. We
will take that approach in this chapter and concentrate on solving for the forces and
torques that result from, and are required to drive, our kinematic system in such a way as
to provide the designed accelerations. Numerical examples are presented throughout this
chapter. These examples are also provided as disk files for input to either program MA-
TRIX or FOURBAR. These programs are described in Appendix A. The reader is encour-
aged to open the referenced files in these programs and investigate the examples in more
detail. The file names are noted in the discussion of each example.

111 NEWTONIAN SOLUTION METHOD

Dynamic force analysis can be done by any of several methods. The one which gives
the most information about forces internal to the mechanism requires only the use of
Newton's law as defined in equations 10.1 (p. 492) and /OA (p. 495). These can be writ-
ten as a summation of all forces and torques in the system.

521



DESIGN OF MACHINERY = CHAPTER 11

ZFzma 2T=1Ga (11.1a)

It is also convenient to separately sum force components in X and Y directions, with
the coordinate system chosen for convenience. The torques in our two dimensional sys-
tem are all in the Z direction. This lets us break the two vector equations into three sca-

lar equations:

Y F, =ma, Y F, =ma, Yy =10 (11.1b)

These three equations must be written for each moving body in the system which
will lead to a set of linear simultaneous equations for any system. The set of simulta-
neous equations can most conveniently be solved by a matrix method as was shown in
Chapter 5. These equations do not account for the gravitational force (weight) on a link.
If the kinematic accelerations are large compared to gravity, which is often the case, then
the weight forces can be ignored in the dynamic analysis. If the machine members are
very massive or moving slowly with small kinematic accelerations, or both, the weight
of the members may need to be included in the analysis. The weight can be treated as an

external force acting on the CG of the member at a constant angle.

11.2 SINGLE LINK IN PUREROTATION

As a simple example of this solution procedure, consider the single link in pure rotation
shown in Figure 11-la. In any of these kinetostatic dynamic force analysis problems,
the kinematics of the problem must first be fully defined. That is, the angular accelera-
tions of all rotating members and the linear accelerations of the CGs of all moving mem-
bers must be found for all positions of interest. The mass of each member and the mass
moment of inertia 70with respect to each member's CG must also be known. In addi-
tion there may be external forces or torques applied to any member of the system. These

are all shown in the figure.

While this analysis can be approached in many ways, it is useful for the sake of con-
sistency to adopt a particular arrangement of coordinate systems and stick with it. We
present such an approach here which, if carefully followed, will tend to minimize the
chances of error. The reader may wish to develop his or her own approach once the prin-
ciples are understood. The underlying mathematics is invariant, and one can choose co-
ordinate systems for convenience. The vectors which are acting on the dynamic system
in any loading situation are the same at a particular time regardless of how we may de-
cide to resolve them into components for the sake of computation. The solution result

will be the same.

We will first set up a nonrotating, local coordinate system on each moving member,
located at its CG. (In this simple example we have only one moving member.) All ex-
ternally applied forces, whether due to other connected members or to other systems
must then have their points of application located in this local coordinate system. Fig-
ure 11-1b shows a free-body diagram of the moving link 2. The pin joint at 02 on link
2 has a force F 12 due to the mating link I, the x and y components of which are F12x and
F 12y These subscripts are read "force of link T on 2" in the x or y direction. This sub-
script notation scheme will be used consistently to indicate which of the "action-reac-
tion" pair of forces at each joint is being solved for.



DYNAMIC FORCE ANALYSIS

Note: x,y is a local, nonrotating coordinate system (LNCS), attached to the link Rp

an

1
Note: X,Yis the fixed, global coordinate system (GCS) X

(@) Kinematic diagram (b) Force (free-body) diagrams

FIGURE 11-1

in rofﬁo

There is also an externally applied force Fp shown at point P, with components Fp,
and Fpy The points of application of these forces are defined by position vectors Ry,
and Rp, respectively. These position vectors are defined with respect to the local coordi-
nate system at the CG of the member. We will need to resolve them into x and y compo-
nents. There will have to be a source torque available on the link to drive it at the kine-
matically defined accelerations. This is one of the unknowns to be solved for. The
source torque is the torque delivered from the ground to the driver link 2 and so is la-
beled T},. The other two unknowns in this example are the force components at the pin
joint F;, and F12y-

We have three unknowns and three equations, so the system can be solved. Equa-
tions 11.1 can now be written for the moving link 2. Any applied forces or torques whose
directions are known must retain the proper signs on their components. We will assume
all unknown forces and torques to be positive. Their true signs will “come out in the
wash.”

2F=FP +F12 =mag
2T=T12 +(R12XF12)+(RPXFP)=IG(X (112)

The force equation can be broken into its two components. The torque equation con-
tains two cross product terms which represent torques due to the forces applied at a dis-
tance from the CG. When these cross products are expanded, the system of equations
becomes:
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Fp +Fp =muag,

pr +Fi2y =m2aGy (113)
Ty +(R12, B, — Rz Fp, )+(RPx Fp, —Rp Fp, ) =Igo
This can be put in matrix form with the coefficients of the unknown variables form-

ing the A matrix, the unknown variables the B vector, and the constant terms the C vec-
tor and then solved for B.

(A] x [B] = (€]
1 0 o |k, myag, — Fp,
0 1 0| x ﬁ2y = mzaGy - pr (1 1 4)

R, Ry 1
2y T T IG(x—(RPXFPy—RPyFPX)

Note that the A matrix contains all the geometric information and the C matrix con-
tains all the dynamic information about the system. The B matrix contains all the un-
known forces and torques. We will now present a numerical example to reinforce your
understanding of this method.

ZTEXAMPLE 11-1

Dynamic Force Analysis of a Single Link in Pure Rotation. (See Figure 11-1)

Given: The 10-in-long link shown weighs 4 1b. Its CG is on the line of centers at the 5-in
point. Its mass moment of inertia about its CG is 0.08 Ib-in-sec?. Its kinematic
data are:

0, deg ®, rad/sec oy rad/sec? ag, in/sec?
30 20 15 2001 @ 208°

An external force of 40 1b at 0° is applied at point P.

Find: The force F at pin joint O, and the driving torque T, needed to maintain mo-
tion with the given acceleration for this instantaneous position of the link.

Solution:
1 Convert the given weight to proper mass units, in this case blobs:

_weight  41b

™ T e ~ 00104 blobs @
m/sec

ass

2 Set up a local coordinate system at the CG of the link and draw all applicable vectors acting
on the system as shown in the figure. Draw a free-body diagram as shown.

3 Calculate the x and y components of the position vectors R, and Rp in this coordinate system: »
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R;y=5in@£210°% R =-433 Ry, =-2.50
Rp =5in @305 Rp =+433,  Rp =+2.50 (b)

4 Calculate the x and y components of the acceleration of the CG in this coordinate system:

a; = 2001 @£208° ag, =-1766.78, ag, = -939.41 (c)

5 Calculate the x and y components of the external force at P in this coordinate system:
Fp=40@£0°% Fp_ =40, pr =0 (d)

6 Substitute these given and calculated values into the matrix equation 11.4

1 0 0] |fiz, (0.01)(-1766.78)— 40
0 1 0[X|Fy, |= (0.01)(-939.41)-0
250 433 1] |, (0.08)(15) - {(4.33)(0) - (2.5)(40)}

()

1 0 0] (A2, | [-57.67

0 L 0lx|Fy |=| -9.39

250 433 1] |7 101.2
12

7 Solve this system either by inverting matrix A and premultiplying that inverse times matrix
C using a pocket calculator such as the HP-15¢ or by inputting the values for matrices A and
C to program MATRIX provided with this text.

Program MATRIX gives the following solution:
Fp, =-57671b, Flzy =-9.39 Ib, T, =204.72 1b-in H
Converting the force to polar coordinates:

Fj, =58.43@£189.25° (&

Read the disk file EO11-01.mat into program MATRIX to exercise this example.

11.3 FORCE ANALYSIS OF A THREEBAR CRANK-SLIDE LINKAGE

When there is more than one link in the assembly, the solution simply requires that the
three equations 11.1b be written for each link and then solved simultaneously. Figure
11-2a shows a threebar crank-slide linkage. This linkage has been simplified from the
fourbar slider-crank (see Figure 11-4) by replacing the kinematically redundant slider
block (link 4) with a half joint as shown. This linkage transformation reduces the num-
ber of links to three with no change in degree of freedom (see Section 2.9, p. 40). Only
links 2 and 3 are moving. Link 1 is ground. Thus we should expect to have six equa-
tions in six unknowns (three per moving link).
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(b) Free-body diagrams

Dynamic force analysis of o slider-crank linkage

Figure 11-2b shows the linkage “exploded” into its three separate links, drawn as
free bodies. A kinematic analysis must have been done in advance of this dynamic force
analysis in order to determine, for each moving link, its angular acceleration and the lin-
ear acceleration of its CG. For the kinematic analysis, only the link lengths from pin to
pin were required. For a dynamic analysis the mass (m) of each link, the location of its
CG, and its mass moment of inertia (/ ) about that CG are also needed.

The CG of each link is initially defined by a position vector rooted at one pin joint
whose angle is measured with respect to the line of centers of the link in the local, rotat-
ing coordinate system (LRCS) x', y'. This is the most convenient way to establish the
CG location since the link line of centers is the kinematic definition of the link. Howev-
er, we will need to define the link’s dynamic parameters and force locations with respect
to a local, nonrotating coordinate system (LNCS) x, y located at its CG and which is al-
ways parallel to the global coordinate system (GCS) XY. The position vector locations
of all attachment points of other links and points of application of external forces must
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be defined with respect to the link's LNCS. Note that these kinematic and applied force
data must be available for all positions of the linkage for which a force analysis is de-
sired. In the following discussion and examples, only one linkage position will be ad-
dressed. The process is identical for each succeeding position and only the calculations
must be repeated. Obviously, a computer will be a valuable aid in accomplishing the
task.

Link 2 in Figure 11-2b shows forces acting on it at each pin joint, designated F 12
and F32. By convention their subscripts denote the force that the adjoining link is exert-
ing on the link being analyzed; that is, F 121is the force of 1 on 2 and F 32is the force of3
on 2. Obviously there is also an equal and opposite force at each of these pins which
would be designated as F 21 and F 23, respectively. The choice of which of the members
of these pairs of forces to be solved for is arbitrary. As long as proper bookkeeping is
done, their identities will be maintained.

When we move to link 3, we maintain the same convention of showing forces act-
ing on the link in its free-body diagram. Thus at instant center !z3 we show F 23 acting
on link 3. However, because we showed force F32 acting at the same point on link 2,
this introduces an additional unknown to the problem for which we need an additional
equation. The equation is available from Newton's third law:

Fy;=-F; (11.5)

Thus we are free to substitute the negative reaction force for any action force at any
joint. This has been done on link 3 in the figure in order to reduce the unknown forces at
that joint to one, namely F32. The same procedure is followed at each joint with one of
the action-reaction forces arbitrarily chosen to be solved for and its negative reaction ap-
plied to the mating link.

The naming convention used for the position vectors (Rap) which locate the pin
joints with respect to the CG in the link's nonrotating local coordinate system is as fol-
lows. The first subscript (a) denotes the adjoining link to which the position vector
points. The second subscript ( p) denotes the parent link to which the position vector
belongs. Thus in the case oflink 2 in Figure 11-2b, vector R 12 locates the attachment
point of link 1 to link 2, and R32 the attachment point of link 3 to link 2. Note that in
some cases these subscripts will match those of the pin forces shown acting at those
points, but where the negative reaction force has been substituted as described above, the
subscript order of the force and its position vector will not agree. This can lead to confu-
sion and must be carefully watched for typographical errors when setting up the prob-
lem.

Any external forces acting on the links are located in similar fashion with a position
vector to a point on the line of application of the force. This point is given the same let-
ter subscript as that of the external force. Link 3 in the figure shows such an external
force F p acting on it at point P. The position vector Rp locates that point with respect to
the CG. Itis important to note that the CG of each link is consistently taken as the point
of reference for all forces acting on that link. Left to its own devices, an unconstrained
body in complex motion will spin about its own CG; thus we analyze its linear acceler-
ation at that point and apply the angular acceleration about the CG as a center.

Equations 11.1 are now written for each moving link. For link 2, with the cross
products expanded:
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Ry, + B, =myag,

Fizy =+ F32y = mzany (116a)
Tiz +(R12x Fp, —Rpp P )+ (Rzzjr Fyp, —Ryp Fn, ) =1Ig, 0,

For link 3, with the cross products expanded, note the substitution of the reaction
force — F3; for Fps:

B3, ~Fy +Fp =msag,

Fi3y _F32y +FPy = m3aG3y (]16b)
(R13,£F13y —Ry3, 1""13,5)—(1323,r B, — Ry, Fszx)+(RPx Fp, —Rp, FPX)=IG3(X3

Note also that T, the source torque, only appears in the equation for link 2 as that
is the driver crank to which the motor is attached. Link 3 has no externally applied torque
but does have an external force Fp which might be due to whatever link 3 is pushing on
to do its external work.

There are seven unknowns present in these six equations, Fioy, Fiay, F32e F32y
F13y, F13y, and T13. But, Fy3yis due only to friction at the joint between link 3 and link 1.
We can write a relation for the friction force f at that interface such as f= tuN, where 1
is a known coefficient of coulomb friction. The friction force always opposes motion.
The kinematic analysis will provide the velocity of the link at the sliding joint. The di-
rection of f will always be the opposite of this velocity. Note that |l is a nonlinear func-
tion which has a discontinuity at zero velocity; thus at the linkage positions where ve-
locity is zero, the inclusion of W in these linear equations is not valid. (See Figure 10-5a,
p- 502.) In this example, the normal force N is equal to Fy3, and the friction force f is
equal to F13,. For linkage positions with nonzero velocity, we can eliminate Fy3y by
substituting into equation 11.6b,

F3, =ph3 (11.6¢)
where the sign of F13, is taken as the opposite of the sign of the velocity at that point.

We are then left with six unknowns in equations 11.6 and can solve them simultaneous-
ly. We also rearrange equations 11.6a and 11.6b to put all known terms on the right side.

Ry, +Fy =mag,
K, +F, =ma
1, *+ By, =tgles,
Tip+Ryy Ry~ Ry Bo, +Ryp Py —Rsp Fp =16,0
(11.6d)
R3, — P =mag, —Fp

X

tHFy —-F =m - F
W hs, — 3, 396G, ~ Ip,

(iu R, — R, )Fl3x Ry Py +Ry3 Fyp =Ig,03-Rp Fp +Rp Fp,

Putting these six equations in matrix form we get:
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1 0 1 0 0 0] TR, T
0 1 0 1 0 of |g,
y
R, Ra, -Rn, Ry, 0 1 Py
0 0 -1 0 1 0| g, |~
0 0 0 -1 mn o |gs
0 0 Ry, Ry, (HR13X —R13y) 0 |7y |

11.7)
myag,
myaG,,
Ig,00
mag, —Fp,
mag,, —pr
LIG3 03~ Rp Fp, + RPy Fp, |

This system can be solved by using program MATRIX or any other matrix solving calculator.
As an example of this solution consider the following linkage data.

A TEXAMPLE 11-2

Dynamic Force Analysis of a Threebar Crank-Slide Linkage with Half Joint, (See

Figure 11-2, p. 526.)

Given:

The 5-in long crank (link 2) shown weighs 2 1b. Its CG is at 3 in and 30° from the
line of centers. Its mass moment of inertia about its CG is 0.05 Ib-in-sec2. Its
acceleration is defined in its LNCS, x,y. Its kinematic data are:

6, deg ®, rad/sec oy rad/sec? ag, in/sec?
60 30 -10 2700.17 @ —89.4°

The coupler (link 3) is 15 in long and weighs 4 Ib. Its CG is at 9 in and 45° from
the line of centers. Its mass moment of inertia about its CG is 0.10 1b-in-sec2. Its
acceleration is defined in its LNCS, x,y. Its kinematic data are:

053 deg w3 rad/sec o3 rad/sec? ag, in/sec?
99.59 -8.78 —136.16 3453.35 @ 254.4°

The sliding joint on link 3 has a velocity of 96.95 in/sec in the +Y direction.

There is an external force of 50 Ib at —45°, applied at point P which is located at
2.7 in and 101° from the CG of link 3, measured in the link’s embedded, rotating
coordinate system or LRCS x', y' (origin at A and x axis from A to B). The coeffi-
cient of friction p is 0.2.
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Find: The forces F|,, F3;, Fy3 at the joints and the driving torque T, needed to main-

tain motion with the given acceleration for this instantaneous position of the link.

Solution:

Convert the given weights to proper mass units, in this case blobs:

ight  21b
Mass ey = o = —=——— = 0.0052 blobs (@
g 386 in/sec
ight  41lb
Mass, = et = ————— = 0,0104 blobs (b)

g 386 in/sec’

Set up a local, nonrotating xy coordinate system (LNCS) at the CG of each link, and draw all
applicable position and force vectors acting within or on that system as shown in Figure 11-2.
Draw a free-body diagram of each moving link as shown.

Calculate the x and y components of the position vectors Rys, R32, Rp3, Ry3, and Rp in the
LNCS coordinate system:

Rpp= 300 @ £ 270.0% Ry = 0, Ry, = =30
Ry = 283 @ £ 280% Ry = 2500, Ry = 1333
Ry = 900 @ £ 324.5% Ry = 7329, Ry = -5224 (©
R;;=1072 @ £ 6314% Ry = 4843, Ry = 9563
Rp= 270 @ £ 2010 Rp = -2.521, Rp, = —0.968

These position vector angles are measured with respect to the LNCS which is always paral-
lel to the global coordinate system (GCS), making the angles the same in both systems.

Calculate the x and y components of the acceleration of the CGs of all moving links in the
global coordinate system:

-2700

ag, = 270017 @ £ -894%  ag, = 2828, ag,

(d)
-3325.54

ag, = 345335 @ £ 2544°% aGSX=—930.82, a,,

Calculate the x and y components of the external force at P in the global coordinate system:

Fp =50 @£—-45° Fp = 35.36, FPy =-35.36 (e)

Substitute these given and calculated values into the matrix equation 11.7.
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o 1 0 0 0] [Fa, ]
01 0 1 0 0 Fa,
3 0 -1.333 25 0 1 Fyo |
00 -l 0 1 0| | By, |~
00 0 -1 0.2 0 Fs,
0 0 -5224 -7329 [(0.2)4.843-(9.563)] 0| [T, |
) )]
(0.005)(28.28) 1 [ 01417
(0.005)(-2700) -13.500
(0.05)(-10) -.500
(0.01)(-930.82) ~ 35.36 ~ | —44.668
(0.01)(=3325.54) - (=35.36) 2.105
[ (0.1)(~136.16) - (=2.521)(~35.36) +(-0.968)(35.36) | [ ~136.987 |

7 Solve this system either by inverting matrix A and premultiplying that inverse times matrix
C using a pocket calculator such as the HP-15¢, or by inputting the values for matrices A and
C to program MATRIX provided with this text which gives the following solution:

[Fp ] [-39.232]
Fo, | |-10336
Fy, |_| 39373 ©
Fp, | | -3.164
Rs, -5.295
7, | |177.59)]

Converting the forces to polar coordinates:
Fj, = 40571b @ £ 194.76°
Fi, = 39.501b @ £ —4.60° (h)
F;= 5401b @ £191.31°

Read the disk file E011-02.mat into program MATRIX to exercise this example.

11.4 FORCE ANALYSIS OF A FOURBAR LINKAGE

Figure 11-3a shows a fourbar linkage. All dimensions of link lengths, link positions,
locations of the links’ CGs, linear accelerations of those CGs, and link angular accelera-
tions and velocities have been previously determined from a kinematic analysis. We now
wish to find the forces acting at all the pin joints of the linkage for one or more positions.
The procedure is exactly the same as that used in the above two examples. This linkage
has three moving links. Equation 11.1 provides three equations for any link or rigid body
in motion. We should expect to have nine equations in nine unknowns for this problem.

Figure 11-3b shows the free-body diagrams for all links, with all forces shown. Note
that an external force Fp is shown acting on link 3 at point P. Also an external torque T4
is shown acting on link 4. These external loads are due to some other mechanism (de-
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Y
15"
P
Fp
Rcc;
(o) The iinkage and dimensions 9" B
: T,
-
10"
A 0 1 \CGy
g 2 (ce il .
o, / 2 5"
(0] / 4 6,
2 3 309~ 9,
L / \ ; \ - X
R.. é\? 5 Reg, &é GCS
G2 o, 1 1 0,

19"

FIGURE 11-3
Dynamic force analysis of a fourbar linkage.

(See also Figure P11-2, p. 561)
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vice, person, thing, etc.) pushing or twisting against the motion of the linkage. Any link
can have any number of external loads and torques acting on it. Only one external torque
and one external force are shown here to serve as examples of how they are handled in
the computation. (Note that a more complicated force system, if present, could also be
reduced to the combination of a single force and torque on each link.)

To solve for the pin forces it is necessary that these applied external forces and
torques be defined for all positions of interest. We will solve for one member of the pair
of action-reaction forces at each joint, and also for the driving torque T;, needed to be
supplied at link 2 in order to maintain the kinematic state as defined. The force subscript
convention is the same as that defined in the previous example. For example, F1, is the
force of 1 on 2 and F3;, is the force of 3 on 2. The equal and opposite forces at each of
these pins are designated F»; and Fy3, respectively. All the unknown forces in the figure
are shown at arbitrary angles and lengths as their true values are still to be determined.

The linkage kinematic parameters are defined with respect to a global XY system
(GCS) whose origin is at the driver pivot O, and whose X axis goes through link 4’s fixed
pivot O4. The mass (m) of each link, the location of its CG, and its mass moment of in-
ertia (I;) about that CG are also needed. The CG of each link is initially defined within
each link with respect to a local moving and rotating axis system (LRCS) embedded in
the link because the CG is an unchanging physical property of the link. The origin of this
x',y' axis system is at one pin joint and the x’ axis is the line of centers of the link. The
CG position within the link is defined by a position vector in this LRCS. The instanta-
neous location of the CG can easily be determined for each dynamic link position by
adding the angle of the internal CG position vector to the current GCS angle of the link.

We need to define each link’s dynamic parameters and force locations with respect
to a local, moving, but nonrotating axis system (LNCS) x,y located at its CG as shown
on each free-body diagram in Figure 11-3b. The position vector locations of all attach-
ment points of other links and points of application of external forces must be defined
with respect to this LNCS axis system. These kinematic and applied force data differ
for each position of the linkage. In the following discussion and examples, only one link-
age position will be addressed. The process is identical for each succeeding position.

Equations 11.1 (p. 522) are now written for each moving link. For link 2, the result
is identical to that done for the slider-crank example in equation 11.6a (p. 528).

B, + P, =mag,

F12y +F32y =m2aGZy (11.8a)
5p) +(R12,61""12y _Rl2yFle)+(R32xF32y —R32yF321)= 1,0,

For link 3, with substitution of the reaction force —F3, for F;3, the result is similar
to equation 11.6b with some subscript changes to reflect the presence of link 4.

Fy, — I3 tFp =mag,

F43y _F32y +pr =m3a63y (118b)

(R43XF43y —R43y1""43x)—(1323)61’32y “R23yF321)+(RPxFPy _RPyFPX)z {03
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For link 4, substituting the reaction force —F43 for F34 a similar set of equations 11.1
can be written:

Ry, —F, =maag,

Fi4y _F43y =m4aG4y (118C)
(R14x Fa, — Ry B4, )— (R34x Fy3, —Ryy Fi3, )+ Ty=1g,04

Note again that T, the source torque, only appears in the equation for link 2 as that
is the driver crank to which the motor is attached. Link 3, in this example, has no exter-
nally applied torque (though it could have) but does have an external force Fp. Link 4,
in this example, has no external force acting on it (though it could have) but does have
an external torque T4. (The driving link 2 could also have an externally applied force on
it though it usually does not.) There are nine unknowns present in these nine equations,
Fl1ox F12y, F325 F32y, F435 Fa3y F1ap F1ay, and T1, so we can solve them simultaneous-
ly. We rearrange terms in equations 11.8 to put all known constant terms on the right
side and then put them in matrix form.

10 1 0o 0o 0o 0 0 0] [R]
o 1t o 1 0o o o o o g
Ry, Ry, -Ry, Ry, O 0 o 0o 1| |R,
0 0 -1 0 1 0 0 0 0 F32y
0 0 0 -1 0 1 0 0 0x|g | =
0 0 Ry, ~Ry Ry, Ry, 0 0 0 Fis,
o o o o -1 o 1 o of |f
0 0 0 0 0 -1 0 1 0 Fi4y
00 0 0 Ry, Ry, —Ry Ry 0| |, |
(11.9)
_ i, i
mAG,,
I, 0

miag, - Fp,
myag,, — pr
Ig, 03— Rp, pr + RPy Fp,
maac,
myag,,
Ig,04-T4

This system can be solved by using program MATRIX or any matrix solving calcula-
tor. As an example of this solution consider the following linkage data.
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A DEXAMPLE 11-3

Dynamic Force Analysis of a Fourbar Linkage. (See Figure 11-3, p. 532)

Given: The 5-in-long crank (link 2) shown weighs 1.5 Ib. Its CG is at 3 in at +30° from
the line of centers. Its mass moment of inertia about its CG is 0.4 Ib-in-sec?. Its
kinematic data are:

6, de w5 rad/sec o, rad/sec? ag. in/sec’
2 deg 2 2 G,

60 25 —40 1878.84 @ 273.66°

The coupler (link 3) is 15 in long and weighs 7.7 Ib. Its CG is at 9 in at 45° off
the line of centers. Its mass moment of inertia about its CG is 1.5 1b-in-sec?, Its
kinematic data are:

65 deg 3 rad/sec 03 rad/sec? ac, in/sec?
20.92 -5.87 120.9 3646.1 @ 226.5°

There is an external force of 80 Ib at 330° on link 3, applied at point P which is
located 3 in at 100° from the CG of link 3. There is an external torque on link 4
of 120 lb-in. The ground link is 19 in long. The rocker (link 4) is 10 in long and
weighs 5.8 Ib. Its CG is at 5 in at 0° off the line of centers. Its mass moment of
inertia about its CG is 0.8 Ib-in-sec?. Its kinematic data are:

6,4 deg 4 rad/sec Oy rad/sec’ ag, in/sec?

104.41 7.93 276.29 1416.8 @ 207.2°

Find: The forces Fyz, Fay, F43, F 4, at the joints and the driving torque Ty, needed to
maintain motion with the given acceleration for this instantaneous position of the
link.

Solution:

1 Convert the given weight to proper mass units, in this case blobs:

weight  1.51b

MASSipr = = =0.004 blobs (a)
LT g 386 infsec?
massgpe3 = weight _ 7'_7 1o 5 =0.020 blobs b)
g 386 in/sec
massypgq =& =581 _ 6015 blobs ©

g 386 infsec?

2 Setupan LNCS xy coordinate system at the CG of each link, and draw all applicable vectors
acting on that system as shown in the figure. Draw a free-body diagram of each moving link
as shown.

3 Calculate the x and y components of the position vectors Rjs, R3y, Ry3, Ry3, Ray, Ry, and
Rp in the link's LNCS. Ry3, Rjs, and R4 will have to be calculated from the given link
geometry data using the law of cosines and law of sines. Note that the current value of link
3’s position angle (83) in the GCS must be added to the angles of all position vectors before
creating their x,y components in the LNCS if their angles were originally measured with re-
spect to the link’s embedded, local rotating coordinate system (LRCS).
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O O O O O 0 W o -

R;= 300 @ £ 270005 Ry = 0000, Ry = -3

Rp= 283 @ £ 28005 Ry = 2500, Ry = 1333

Ry3= 900 @ £ 245925 Ry = —3672, Ry = —8217
Ri3=1072 @ £ —1546% Ry, = 10332, Ry = 2858 (d)
Ry = 500 @ £ 104415 Ry = -1244, Ry = 4843

Riy= 500 @ £ 28441% Ry = 1244, Ry = —4843

Rp= 300 @ £ 12092° Rp = 1542, Rp = 2574

Calculate the x and y components of the acceleration of the CGs of all moving links in the
global coordinate system (GCS):

1878.84 @ £273.66° ag,,
3646.10@ £226.51% ag, = —2509.35, aGy,

—-1875.01

an 11994, any

—2645.23 (e)

aGa
ag, = 141680@ £207.24% ag,, = —-1259.67, ag,, = —648.50
Calculate the x and y components of the external force at P in the GCS:
Fp; =80 @ Z 330°% Fp3 =69.28, Fp3y =-40.00 H

Substitute these given and calculated values into the matrix equation 11.9 (p. 534).

0 1 0 0 0 0 0 0] [A,,
1 0 1 0 0 0 0 0] |Ay,
0 -1330 25 0 0 0 0 1 Fyp_
0 -1 0 1 0 0 0 0 |By,
0 0 -1 0 1 0 0 O|x|Es |=
0 -8217 3.673 2861 10339 0 0 0| |Fa,
0 0 0 -1 0 1 0 0| |[Aqg,
0 0 0 0 -1 0 1 0| |Fa,
0 0 0 4843 1244 4843 1244 0] |Tpp |
(&)
[ (0.004)(119.94) 11 0480
(0.004)(—1875.01) ~7.500
(0.4)(—40) -16.000
(0.02)(~2509.35) - (69.28) ~119.465
(0.02)(-2645.23) - (—40) =| -12.908
(1.5)(120.9) - [(-1.542)(—40) - (2.574)(69.28)] | | 298.003
(0.015)(-1259.67) -18.896
(0.015)(—648.50) -9.727
(0.8)(276.29) - (120) | | 101.031]
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7 Solve this system either by inverting matrix A and premultiplying that inverse times matrix
C using a pocket calculator such as the HP-28, or by inputting the values for matrices A and
C to program MATRIX provided with this text which gives the following solution:

Fp, ] [-117.65]

B, ~107.84

Fy, 118.13

Fy, 100.34

Fy |=| -134 (h)
| | o

14, —20.

Fa, 77.71

T, | | 24323]

Converting the forces to polar coordinates:

F,= 159601b @ £/ 222.52°
Fy, = 154991b @ £ 40.35°
Fis= 87441b @ £ 90.88° ()
F,= 80301 @ £ 104.59°

8 The pin-force magnitudes in (i) are needed to size the pivot pins and links against failure and
to select pivot bearings that will last for the required life of the assembly. The driving torque
T12 defined in (h) is needed to select a motor or other device capable of supplying the power
to drive the system. See Section 2.16 (p. 60) for a brief discussion of motor selection. Is-
sues of stress calculation and failure prevention are beyond the scope of this text, but note
that those calculations cannot be done until a good estimate of the dynamic forces and
torques on the system has been made by methods such as those shown in this example.

This solves the linkage for one position. A new set of values can be put into the A
and C matrices for each position of interest at which a force analysis is needed. Read
the disk file EII-03.mat into program MATRIX to exercise this example. The disk file
EII-03.4br can also be read into program FOURBAR which will run the linkage through
a series of positions starting with the stated parameters as initial conditions. The linkage
will slow to a stop and then run in reverse due to the negative acceleration. The matrix
of equation (g) can be seen within FOURBAR using Dynamics/Solve/Show  Matrix.

It is worth noting some general observations about this method at this point. The
solution is done using cartesian coordinates of all forces and position vectors. Before
being placed in the matrices, these vector components must be defined in the global co-
ordinate system (GCS) or in nonrotating, local coordinate systems, parallel to the global
coordinate system, with their origins at the links' CGs (LNCS). Some of the linkage pa-
rameters are normally expressed in such coordinate systems, but some are not, and so
must be converted. The kinematic data should all be computed in the global system or
in parallel, nonrotating, local systems placed atthe CGs of individual links. Anyexter-
nal forces on the links must also be defined in the global system.
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However, the position vectors that define intralink locations, such as the pin joints
versus the CG, or which locate points of application of external forces versus the CG are
defined in local, rotating coordinate systems embedded in the links (LRCS). Thus these
position vectors must be redefined in a nonrotating, paraliel system before being used
in the matrix. Anexample of this is vector R, which was initially defined as 3 in at 100°
in link 3’s embedded, rotating coordinate system. Note in the example above that its
cartesian coordinates for use in the equations were calculated after adding the current
value of 95 to its angle. This redefined R, as 3 in at 120.92° in the nonrotating local
system. The same was done for position vectors Rys, R3z, Ra3, Ry3, Ray, and Ryy. In
each case the intralink angle of these vectors (which is independent of linkage position)
was added to the current link angle to obtain its position in the xy system at the link’s
CG. The proper definition of these position vector components is critical to the solution,
and it is very easy to make errors in defining them.

To further confuse things, even though the position vector Ry, is initially measured
in the link’s embedded, rotating coordinate system, the force Fp, which it locates, is not.
The force Fp is not part of the link, as is R,, but rather is part of the external world, so it
is defined in the global system.

11.5 FORCE ANALYSIS OF A FOURBAR SLIDER-CRANK LINKAGE

The approach taken for the pin-jointed fourbar is equally valid for a fourbar slider-crank
linkage. The principal difference will be that the slider block will have no angular ac-
celeration. Figure 11-4 shows a fourbar slider-crank with an external force on the slider
block, link 4. This is representative of the mechanism used extensively in piston pumps
and internal combustion engines. We wish to determine the forces at the joints and the
driving torque needed on the crank to provide the specified accelerations. A kinematic
analysis must have previously been done in order to determine all position, velocity, and
acceleration information for the positions being analyzed. Equations 11.1 are written for
each link. For link 2:

Ry, + By =mag
x x 2x

F‘lzy =+ F32y = mzaazy (11103)
N +(R12x Fa, —R ko, )+(R32x Fyp —Ryp Fp, ) =Ig, 0,
This is identical to equation 11.8a for the “pure” fourbar linkage. For link 3:

Fy3, —Fp, =mag,
Fis, =P, =myag, (11.10b)

(R43x Fi3, —Ry3 Fy3, )—(Rzax By —Ry3 Fip )= Ig, 03

This is similar to equation 11.8b, lacking only the terms involving F,, since there is no
external force shown acting on link 3 of our example slider-crank. For link 4:
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(a) Linkage

(b) Free-body diagrams
FIGURE 11-4

Dynamic force andlysis of the fourbar slider-crank linkage

Fa, —Fy, +Fp =muag,

FMy —F43y +pr =myag, (11.10c)
(R14x By, ~ Ry B, )‘ (R34x Fa3, —Rag Fus, )+ (RPX Fp, —Rp Fp, ) =1G,04

These contain the external force F,, shown acting on link 4.

For the inversion of the slider-crank shown, the slider block, or piston, is in pure
translation against the stationary ground plane; thus it can have no angular acceleration
or angular velocity. Also, the position vectors in the torque equation (equation 11.10¢)
are all zero as the force F, acts at the CG. Thus the torque equation for link 4 (third ex-
pression in equation 11.10c) is zero for this inversion of the slider-crank linkage. Its lin-
ear acceleration also has no y component.
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oy =0, ag, =0 (11.10d)

The only x directed force that can exist at the interface between links 4 and 1 is fric-
tion. Assuming coulomb friction, the x component can be expressed in terms of the y
component of force at this interface. We can write a relation for the friction force f at
that interface such as f= N, where 11 is a known coefficient of friction. The plus and
minus signs on the coefficient of friction are to recognize the fact that the friction force
always opposes motion. The kinematic analysis will provide the velocity of the link at
the sliding joint. The sign of u will always be the opposite of the sign of this velocity.

Fi4x =iu[i4y (11106)
Substituting equations 11.10d and 11.10e into the reduced equation 11.10¢ yields:
Ry, ~Fy, +Fp =myag,

Fg, =Fi +Fp =0 (11.10)

This last substitution has reduced the unknowns to eight, F}oy, F) 2 320 F32y Fazy
Fy43y, F1ay, and T13,; thus we need only eight equations. We can now use the eight equa-
tions in 11.10a, b, and f to assemble the matrices for solution.

( 1 0 1 0 0 0 0 0] (FIZX-
0 1 0 1 0 0 0 0f |Ry,
“Ry, R, -Rp, Ry, 0 0 0 1 Fp |
0 0 -1 0 1 0 0 0 F32y
X =
0 0 0 -1 0 1 0 0 F43x
0 0 Ry, -Ry -Ry, Ry, 00 Fys,
o 0 o0 0 -1 0 tp ol [Fs
. O 0 0 0 0 -1 1 0] [T, |
(11.10g)
[ myag, 1
mzaazy
Ig, 0
m3dg,,
3G,
Ig, 0
maag, —Fp,
_pr J

Solution of this matrix equation 11.10g plus equation 11.10e will yield complete dynam-
ic force information for the fourbar slider-crank linkage.
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11.6 FORCE ANALYSIS OF THE INVERTED SLIDER-CRANK

Another inversion of the fourbar slider-crank was also analyzed kinematically in Part I.
It is shown in Figure 11-5. Link 4 does have an angular acceleration in this inversion.
In fact, it must have the same angle, angular velocity, and angular acceleration as link 3
because they are rotationally coupled by the sliding joint. We wish to determine the forc-
es at all pin joints and at the sliding joint as well as the driving torque needed to create
the desired accelerations. Each link’s joints are located by position vectors referenced
to nonrotating local xy coordinate systems at each link’s CG as before. The sliding joint
1s located by the position vector Ry3 to the center of the slider, point B. The instanta-
neous position of point B was determined from the kinematic analysis as length b refer-
enced to instant center /53 (point A). See Sections 4.7 (p. 161), 6.7 (p. 276), and 7.3
(p. 315) to review the position, velocity, and acceleration analysis of this mechanism.
Recall that this mechanism has a nonzero Coriolis component of acceleration. The force
between link 3 and link 4 within the sliding joint is distributed along the unspecified
length of the slider block. For this analysis the distributed force can be modeled as a force
concentrated at point B within the sliding joint. We will neglect friction in this example.

The equations for links 2 and 3 are identical to those for the noninverted slider-crank
(Equations 11.10a and b). The equations for link 4 are the same as equations 11.10c
except for the absence of the terms involving F,, since no external force is shown acting
on link 4 in this example. The slider joint can only transmit force from link 3 to link 4 or
vice versa along a line perpendicular to the axis of slip. This line is called the axis of
transmission. In order to guarantee that the force F34 or Fy43 is always perpendicular to
the axis of slip, we can write the following relation:

ﬁ‘F43=0 (lllla)

which expands to:
MXF43X +uyF43y =0 (llllb)
The dot product of two vectors will be zero when the vectors are mutually perpen-

dicular. The unit vector u hat is in the direction of link 3 which is defined from the kine-
matic analysis as 0.

u, =cosf;, u, =sinB;, (11.11¢)

Y

Equation 11.11 provides a tenth equation, but we have only nine unknowns, F|,,
Fiay, F3ox F32y, Fa3y, Fa3y, F1ax Fr4y, and Tpp, s0 one of our equations is redundant.
Since we must include equation 11.11, we will combine the torque equations for links 3
and 4 rewritten here in vector form and without the external force F,.

(Ryz xFa3)=(Ro3 X F3p) = I, 003 = I, 014
(11.12a)

(Ryg xFiy)=(Ray xFy3) = I, 04

Note that the angular acceleration of link 3 is the same as that of link 4 in this link-
age. Adding these equations gives:

(Ras X Fy)—(Ro3 X i ) +(Ryy X Fyy) — (R x Fyg) = (I, +1, Joug (11.12b)
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(a) Linkage

7
\>

Axis
of slip

Axis of
transmission

(b) Free-body diagrams

FIGURE 11-5

Dynamic forces in the inverted slider-crank fourbar linkage

Expanding and collecting terms:

(R43x Ry, )F43y + (R34y Ry, )F43X Ry 3y

+Ry3 Py +Riy Fa, —Rig Fa, =(1G3 +1g, )0‘4 (11.12¢)
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Equations 11.10a, 11.11b, 11.12¢, and the four force equations from equations
11.10b and 11.10c (excluding the external force Fp) give us nine equations in the nine
unknowns which we can put in matrix form for solution.

[ 1 0 1 0 0 0 0 0 O]
0 1 0 1 0 0 0 0o 0
R, Ra, -Rya, Ra, 0 0 o 0 1
0 0 -1 0 1 0 0 0 O
0 0 0 -1 0 1 0 0 O0|x
0 0 Ry, Ry, (R34 —R43y) (R43x—R34 ) Ry, Ry, 0
0 0 0 0 -1 0 1 0 0
0 0 0 0 0 -1 0 1 0
L 0 0 0 0 u, u 0 0 0~
_Flzx—‘ [ maag,, ]
By, myaG,,
Fp Ig, %,
Py, m3ag,
F |=| ™A, (11.13)
Fys, (IG3 +1g, )(x4
Ry, myag,
R, myag,
G2 | | 0 |

11.7 FORCE ANALYSIS—LINKAGES WITH MORE THAN FOUR BARS

This matrix method of force analysis can easily be extended to more complex assemblag-
es of links. The equations for each link are of the same form. We can create a more gen-
eral notation for equations 11.1 to apply them to any assembly of n pin-connected links.
Let j represent any link in the assembly. Let i =j— 1 be the previous link in the chain
and k =j + 1 be the next link in the chain; then, using the vector form of equations 11.1:

Fj+Fy+ Y Foy =mjag, (11.14a)
(Ry xFy )+ (R <y )+ YT, +(ij xY Feu, )= 16,9, (11.14b)
where:
j=2,3,...m i=j-1 k=j+1, j#n if j=nk=1
and th =_F’]’ ij —_-—ij (11140)

The sum of forces vector equation 11.14a can be broken into its two x and y compo-
nent equations and then applied, along with the sum of torques equation 11.14b, to each
of the links in the chain to create the set of simultaneous equations for solution. Any link




* The FOURBAR disk file
(F11-06.4br) that generated
the plots in Figures 11-6
and 11-7 may be opened in
that program to see more
detail on the linkage’s
dynamics.
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may have external forces and/or external torques applied to it. All will have pin forces.
Since the nth link in a closed chain connects to the first link, the value of k& for the nth
link is set to 1. In order to reduce the number of variables to a tractable quantity, substi-
tute the negative reaction forces from equation 11.14c where necessary as was done in
the examples above. When sliding joints are present, it will be necessary to add con-
straints on the allowable directions of forces at those joints as was done in the inverted
slider-crank example above.

11.8 SHAKING FORCES AND SHAKING TORQUE

It is usually of interest to know the net effect of the dynamic forces as felt on the ground
plane as this can set up vibrations in the structure which supports the machine. For our
simple examples of three- and fourbar linkages, there are only two points at which the
dynamic forces can be delivered to link 1, the ground plane. More complicated mecha-
nisms will have more joints with the ground plane. The forces delivered by the moving
links to the ground at the fixed pivots O, and Oy are designated F,; and F4; by our sub-
script convention as defined in Section 11.1 (p. 521). Since we chose to solve for F,
and F4 in our solutions, we simply negate those forces to obtain their equal and oppo-
site counterparts (see also equation 11.5, p. 527).

F =-Fp Fg =-Fiy (11.15a)

The sum of all the forces acting on the ground plane is called the shaking force (F)
as shown in Figure 11-6.” In these simple examples it is equal to:

Fs =F21+F41 (1115b)

The reaction torque felt by the ground plane is also called the shaking torque (T)
as shown in Figure 11-7." This is the negative of the source torque T, which is deliv-
ered to the driving link from the ground.

hakin Force -
on-balanced

Link Length Mass Ineia CG  at  Ext Force  at

No. in  Units Units Posit Deg Ib Deg
1 55

2 20 002 004 10 0

3 6.0 030 060 25 30 12 270
4 30 010 020 15 0 60 —45

Coupler pt. = 3in @ 45°

Open/Crossed = open

Ext. Force 3actsat 5in@ 30° vs. CG of Link 3
Ext. Force 4 acts at 5in @ 90° vs. CG of Link 4
Ext. Torque 3=-20 Ib-in

Ext. Torque 4 = 25 Ib-in

Start Apha2 = 0 rad/sec?

Start Omega2 = 50 rad/sec

Start Theta2 = 0°

~ 440 Final Theta2 = 360°
, e Delta Theta2 = 10°

FIGURE 11-6

Linkage data and polar plot of shaking force for an unbalanced crank-rocker fourbar linkage from program FOURBAR
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. - Link Length Mass Ineia CG  at  Ext Force  at
Ib-in ‘ No. in  Units Units Posit Deg Ib Deg
: 1 55

20 002 004 1.0

2 0
3 60 .030 060 25 30 12 270
4 30 010 020 15 0 60 —45

Open/Crossed = open

Ext. Force 3acts at 5in @ 30° vs. CG of Link 3
Ext. Force 4 acts at 5in @ 90° vs. CG of Link 4
Ext. Torque 3 =-20 Ib-in

Ext. Torque 4 = 25 Ib-in

Start Alpha2 = 0 rad/sec?

Start Omega2 = 50 rad/sec

Start Theta2 = 0°

Final Theta2 = 360°

Delta Theta2 = 2°

e

j
1
!
:
|
' Coupler pt. = 3in @ 45°
1
L
)
|
|

S CTTT T T

Linkcg data and sakigrq curve for an unbalanced crank-rocker fourbar Inkoge from program FOURBAR

T, =Ty, =-T), (11.15¢)

The shaking force will tend to move the ground plane back and forth, and the shak-
ing torque will tend to rock the ground plane about the driveline axis. Both will cause
vibrations. We are usually looking to minimize the effects of the shaking forces and
shaking torques on the frame. This can sometimes be done by balancing, sometimes by
the addition of a flywheel to the system, and sometimes by shock mounting the frame to
isolate the vibrations from the rest of the assembly. Most often we will use a combina-
tion of all three approaches. We will investigate some of these techniques shortly.

11.9 PROGRAM FOURBAR

The matrix methods introduced in the preceding sections all provide force and torque
information for one position of the linkage assembly as defined by its kinematic and
geometric parameters. To do a complete force analysis for multiple positions of a ma-
chine requires that these computations be repeated with new input data for each position.
A computer program is the obvious way to accomplish this. Program FOURBAR, on the
enclosed CD-ROM, computes the kinematic parameters for any fourbar linkage over
changes in time or driver (crank) angle plus the forces and torques concomitant with the
linkage kinematics and link geometry. Examples of its output are shown in Figures 11-6
and 11-7. Please refer to Appendix A for information on the use of program FOURBAR.

11.10 LINKAGE FORCE ANALYSIS BY ENERGY METHODS

In Section 10.13 (p. 515) the method of virtual work was presented. We will now use
that approach to solve the linkage from Example 11-3 as a check on its solution by the
newtonian method used above. The kinematic data given in Example 11-3 did not in-
clude information on the angular velocities of all the links, the linear velocities of the
centers of gravities of the links, and the linear velocity of the point P of application of



DESIGN OF MACHINERY  CHAPTER 11

the external force on link 3. Velocity data were not needed for the newtonian solution but are
for the virtual work approach and are detailed below. Equation 10.26a is repeated here.

n n n n
DFevit Y Ti0p= Y may v+ Y Loy -0 (11.16a)
k=2 k=2 k=2 k=2

Expanding the summations, still in vector form:
(FP3 'VP3 +Fp4 'VP4 )+(T12 -0y +T3 <03 +T4 '(D4)=
(mzan 'VG2 +m3aG3 'VG3 +m4aG4 'VG4) (11.16b)

+(IGZG‘2 +0y +IG3(X‘3 OEY +IG4("4 '(1)4)
Expanding the dot products to create a scalar equation:
(th Va, +Fp Ve, )+(F,,4x Vp, + Fp,, V,,4y )+ (Ti20, + 303 + Tyo4) =
my (anx Vsz + any VGZy )'f‘ ms (aGsx VG3x + aG3y VG3y ) (1 1. 16C)

+ m4(aG4x VG4x +aG4y VG4y )+(IG2 (o510 D) +IG3(X3(D3 +IG4(X4(D4)

A DEXAMPLE 11-4

Analysis of a Fourbar Linkage by the Method of Virtual Work. (See Figure 11-3, p. 532.)

Given: The 5-in-long crank (link 2) shown weighs 1.5 Ib. Its CG is at 3 in at +30° from
the line of centers. Its mass moment of inertia about its CG is 0.4 Ib-in-sec?. Its
kinematic data are:

0, deg m, rad/sec [0 rad/sec? Vg, infsec

60 25 —40 75 @ 180°

The coupler (link 3) is 15 in long and weighs 7.7 Ib. Its CG is at 9 in at 45° off
the line of centers. Its mass moment of inertia about its CG is 1.5 Ib-in-sec2. Its
kinematic data are:

03 deg w3 rad/sec asy rad/sec? Vi, in/sec

20.92 -5.87 120.9 72.66 @ 145.7°
There is an external force on link 3 of 80 1b at 330°, applied at point P which is

located 3 in @ 100° from the CG of link 3. The linear velocity of that point is
67.2 in/sec at 131.94°.

The rocker (link 4) is 10 in long and weighs 5.8 Ib. Its CG is at 5 in at 0° off the
line of centers. Its mass moment of inertia about its CG is 0.8 Ib-in-sec2. Its ki-
nematic data are:

0, deg w,4 rad/sec o, rad/sec? Vs, infsec
104.41 7.93 276.29 39.66 @ 194.41°

There is an external torque on link 4 of 120 Ib-in. The ground link is 19 in long.
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Find: The driving torque T1; needed to maintain motion with the given acceleration for
this instantaneous position of the link.

Solution:
1 The torque, angular velocity, and angular acceleration vectors in this two-dimensional prob-
lem are all directed along the Z axis, so their dot products each have only one term. Note

that in this particular example there is no force Fpy and no torque T;.

2 The cartesian coordinates of the acceleration data were calculated in Example 11-3 above.

ag, = 1878.84 @£ 273.66°; ag, = 119.94, aG,, = -1875.01
ag, = 3646.10 @< 226.51% aG, = —2509.35, ag,, = —2645.23 (a)
ag, = 1416.80 @£ 207.24% aG,, = -1259.67, aG,, = —648.50

3 The x and y components of the external force at P in the global coordinate system were also
calculated in Example 11-3:

Fp =80 @ £330% Fp

y, = 69.28, Fp3y =—40.00 b)

4 Converting the velocity data for this example to cartesian coordinates:

Vo, = 75 @Z180% Vs, = -T5, Ve, = 0
Vo, = 7266 @£ 14570% Vg, =-60.02, V,, = 40.95

Ve, = 3966 @2 194415 Vg, =-384, Vg, = —9.87 (©
Vi = 6120 @£ 131.94%  Vp =-449], Vg, = 49.99

5 Substituting the example data into equation 11.16c:

[(69.28)(—44.91) +(~40)(49.99)] +[0] + 25T, +(0) +(120)(7.93)] =
L3 (119.94)(-75) +(-1875.01)(0)]

386
7.7
]

+ 2o 1(-2509.35)(-60.02) + (-2645.23)(40.95) ()

+ %[(—1259.67)(—38.41) +(~648.50)(-9.87)]

+[(0.4)(~40)(25) +(1.5)(120.9)(~5.87) +(0.8)(276.29)(7.93)]

6 The only unknown in this equation is the input torque T, which calculates to:

Ty, =243.2k (e)

which is the same as the answer obtained in Example 11-3.

This method of virtual work is useful if a quick answer is needed for the input torque,
but it does not give any information about the joint forces.
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1111 CONTROLLING INPUT TORQUE-flYWHEEIS

The typically large variation in accelerations within a mechanism can cause significant
oscillations in the torque required to drive it at a constant or near constant speed. The
peak torques needed may be so high as to require an overly large motor to deliver them.
However, the average torque over the cycle, due mainly to losses and external work done,
may often be much smaller than the peak torque. We would like to provide some means
to smooth out these oscillations in torque during the cycle. This will allow us to size the
motor to deliver the average torque rather than the peak torque. One convenient and rel-
atively inexpensive means to this end is the addition of a flywheel to the system.

TORQUE VARIATION  Figure 11-8 shows the variation in the input torque for a
crank-rocker fourbar linkage over one full revolution of the drive crank. It is running at
a constant angular velocity of 50 rad/sec. The torque varies a great deal within one cy-
cle of the mechanism, going from a positive peak of 341.7 Ib-in to a negative peak of
-166.41b-in.  The average value of this torque over the cycle is only 70.21b-in, being
due to the external work done plus losses. This linkage has only a 12-Ib external force
applied to link 3 at the CG and a 25 Ib-in external torque applied to link 4. These small
external loads cannot account for the large variation in input torque required to maintain
constant crank speed. What then is the explanation? The large variations in torque are
evidence of the kinetic energy that is stored in the links as they move. We can think of
the positive pulses of torque as representing energy delivered by the driver (motor) and
stored temporarily in the moving links, and the negative pulses of torque as energy at-
tempting to return from the links to the driver. Unfortunately most motors are designed
to deliver energy but not to take it back. Thus the "returned energy" has no place to go.

Figure 11-9 shows the speed torque characteristic of a permanent magnet (PM) DC
electric motor. Other types of motors will have differently shaped functions that relate
motor speed to torque as shown in Figure 2-32 and 2-33 (pp. 62-63), but all drivers
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Delta Theta2 = 2°

Linkage data and input torque curve for an unbalanced crank-rocker fourbar linkage from program FOURBAR



DYNAMIC FORCE ANALYSIS

Speed Sp e;d Operating points
§ N § s / Varying load
& 100 —- & 100 —\-j%\o/
T P 2 p s xC

< ’
& Ssof | g sor, A . -
T st | S a5t
& | s B
0 : ' : Torque 0 s 1 1 | Torque
0 100 200 300 400 0 100 200 300 400
% of Rated Torque % of Rated Torque
(@) Speed-torque characteristic of a PM electric motor (b) Load lines superposed on speed-torque curve
FIGURE 11-9

DC permanent magnet (PM) electric motor's typical speed-torque characteristic

(sources) will have some such characteristic curve. As the torque demands on the motor
change, the motor's speed must also change according to its inherent characteristic. This
means that the torque curve being demanded in Figure 11-8 will be very difficult for a
standard motor to deliver without drastic changes in its speed.

The computation of the torque curve in Figure 11-8 was made on the assumption that
the crank (thus the motor) speed was a constant value. All the kinematic data used in the
force and torque calculation was generated on that basis. With the torque variation
shown we would have to use a large-horsepower motor to provide the power required to
reach that peak torque at the design speed:

Power = torque X angular velocity

Peak power = 341.71b-in x 50 2% =17,085271% _ 5 59 np
s€C sec
The power needed to supply the average torque is much smaller.
. in-1b
Average power = 7021b-inx 50 24 23,5108 _ 0 53 b
sec SeC

It would be extremely inefficient to specify a motor based on the peak demand of
the system, as most of the time it will be underutilized. We need something in the sys-
tem which is capable of storing kinetic energy. One such kinetic energy storage device
is called a flywheel.

FLYWHEEL ENERGY Figure 11-10 shows a flywheel, designed as a flat circular
disk, attached to a motor shaft which might also be the driveshaft for the crank of our
linkage. The motor supplies a torque magnitude Ty which we would like to be as con-
stant as possible, i.e., to be equal to the average torque Tgye. The load (our linkage), on
the other side of the flywheel, demands a torque 7, which is time varying as shown in
Figure 11-8. The kinetic energy in a rotating system is:
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FIGURE 11-10

Flywheel on a driveshaft

Shaft

Flywheel

E=Lpy2
2

1117

where [ is the moment of inertia of all rotating mass on the shaft. This includes the I of
the motor rotor and of the linkage crank plus that of the flywheel. We want to determine
how much I we need to add in the form of a flywheel to reduce the speed variation of the
shaft to an acceptable level. We begin by writing Newton’s law for the free-body dia-

gram in Figure 11-10.

but we want :

s0:
substituting :

gives:

and integrating:

TL _TM = I(x
Ty =Tavg
T, -Tp,=1o
a_@__d_w(ﬁ)_wi@
dt  dr \d6 d6
dm
TL —Tavg = I(Dd—e
(T - Ty )dO =0 do
0@, @D max
J’e co. (T, ~ T, )do = J'wmm Iodo
0 @ pyy 1 2 9
foor 1= Ton)iom 1o o)

(11.18a)

(11.18b)

(11.18¢)
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The left side of this expression represents the change in energy E between the max-
imum and minimum shaft @’s and is equal to the area under the torque-time diagram®
(Figures 11-8, p. 548, and 11-11) between those extreme values of . The right side of
equation 11.18c is the change in energy stored in the flywheel. The only way we can
extract energy from the flywheel is to slow it down as shown in equation 11.17. Adding
energy will speed it up. Thus it is impossible to obtain exactly constant shaft velocity in
the face of changing energy demands by the load. The best we can do is to minimize the
speed variation (@, — Wymin) by providing a flywheel with sufficiently large 1.

A DEXAMPLE 11-5

Determining the Energy Variation in a Torque-Time Function.

Given: An input torque-time function which varies over its cycle. Figure 11-11 shows
the input torque curve from Figure 11-8. The torque is varying during the 360°
cycle about its average value.

Find: The total energy variation over one cycle.

Solution:

| Calculate the average value of the torque-time function over one cycle, which in this case is
70.2 Ib-in. (Note that in some cases the average value may be zero.)

* There is often confusion

between torque and energy
because they appear to have
the same units of /b-in (in-
Ib) or N-m (m-N). This
leads some students to think
that they are the same
quantity, but they are not.
Torque # energy. The
integral of torque with
respect to angle, measured
in radians, is equal to
energy. This integral has
the units of in-lb-rad. The
radian term is usually
omitted since it is in fact
unity. Power in a rotating
system is equal to torque x
angular velocity (measured
in rad/sec), and the power
units are then (in-lb-rad)/
sec. When power is
integrated versus time to
get energy, the resulting
units are in-lb-rad, the same

as the integral of torque
2 Note that the integration on the left side of equation 11.18c is done with respect to the aver- Z::?;;;ili aﬁ;‘;:iir:;
age line of the torque function, not with respect to the 9 axis. (From the definition of the | ontributing to the ’
confusion.
Torque Area Area
+200.73 + 153.88
341.7

A B e

P RMS Areas of torque pulses ‘

__________ L in-order over one gycle
Avg,
70.2 il Order NegArea  PosArea
0 1 -261.05 200:73
j T CrankAngle 6 | 2 -92.02 153.88
O, ® ~
i ax Energy units arelb~in~rad-. . )
Area Area
-261.05 -92.02
3417+ :
0 360
FIGURE 11-1
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average, the sum of positive area above an average line is equal to the sum of negative area
below that line.) The integration limits in equation 11.18 are from the shaft angle 8 at which
the shaft (j)is a minimum to the shaft angle 8 at which (j)is a maximum.

3 The minimum (j)will occur after the maximum positive energy has been delivered from the
motor to the load, i.e., at a point (8) where the summation of positive energy (area) in the
torque pulses is at its largest positive value.

4 The maximum (j)will occur after the maximum negative energy has been returned to the load,
i.e., at a point (8) where the summation of energy (area) in the torque pulses is at its largest
negative value.

5 To find these locations in 8 corresponding to the maximum and minimum (j)'s and thus find
the amount of energy needed to be stored in the flywheel, we need to numerically integrate
each pulse of this function from crossover to crossover with the average line. The crossover
points in Figure 11-11 have been labeled A, B, C, and D. (Program FOURBARdoes this inte-
gration for you numerically, using a trapezoidal rule.)

6 The FOURBARprogram prints the table of areas shown in Figure 11-11. The positive and
negative pulses are separately integrated as described above. Reference to the plot of the
torque function will indicate whether a positive or negative pulse is the first encountered in
a particular case. The first pulse in this example is a positive one.

7 The remaining task is to accumulate these pulse areas beginning at an arbitrary crossover (in
this case point A) and proceeding pulse by pulse across the cycle. Table 11-1 shows this pro-
cess and the result.

8 Note in Table 11-1 that the minimum shaft speed occurs after the largest accumulated posi-
tive energy pulse (+200.73 in-lb) has been delivered from the driveshaft to the system. This
delivery of energy slows the motor down. The maximum shaft speed occurs after the largest
accumulated negative energy pulse (-60.32 in-lb) has been received back from the system
by the driveshaft. This return of stored energy will speed up the motor. The total energy
variation is the algebraic difference between these two extreme values, which in this exam-
ple is -261.05 in-Ib. This negative energy coming out of the system needs to be absorbed by
the flywheel and then returned to the system during each cycle to smooth the variations in
shaft speed.

& A 5 Y i SRR LERER R e
TABLE 11-1 Integrating the Torque Function
From A Area = AE Accum. Sum=E
AtoB +200.73 +200.73 ©,,in @B
Bto C -261.05 —60.32 0,0 @C
CtoD +153.88 +93.56
DtoA -92.02 +1.54

Total AEnergy =E@ ®,, —-EQ@w,;,
=(-60.32) - (+200.73) = -261.05in- 1b
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S1ZING THE FLYWHEEL We now must determine how large a flywheel is needed
to absorb this energy with an acceptable change in speed. The change in shaft speed dur-
ing a cycle is called its fluctuation (FI) and is equal to:

Fl=0,0 — O pn (11.19a)

We can normalize this to a dimensionless ratio by dividing it by the average shaft
speed. This ratio is called the coefficient of fluctuation (k).

- (mmax —(’)min)

Oy

(11.19b)

This coefficient of fluctuation is a design parameter to be chosen by the designer. It
typically is set to a value between 0.01 and 0.05, which correspond to a 1 10 5% fluctu-
ation in shaft speed. The smaller this chosen value, the larger the flywheel will have to
be. This presents a design trade-off. A larger flywheel will add more cost and weight to
the system, which factors have to be weighed against the smoothness of operation de-
sired.

We found the required change in energy E by integrating the torque curve

je @y

i (T, ~ Ty )dO=E (11.20a)

and can now set it equal to the right side of equation 11.18c (p. 550):

E=%1(mfm—m3nm) (11.20b)
Factoring this expression:
1
=1 (s + @i | Omax =@ i) (11.200)

If the torque-time function were a pure harmonic, then its average value could be
expressed exactly as:
O e + O
g _ (Onac + Oin) (11.21)
2
Our torque functions will seldom be pure harmonics, but the error introduced by
using this expression as an approximation of the average is acceptably small. We can
now substitute equations 11.19b and 11.21 into equation 11.20c to get an expression for
the mass moment of inertia I; of the system flywheel needed.

E= %1 (20 00 )(k @are )
E

2
kmavg

I. =

8

(11.22)

Equation 11.22 can be used to design the physical flywheel by choosing a desired
coefficient of fluctuation k, and using the value of £ from the numerical integration of




DESIGN OF MACHINERY  CHAPTER 11

Flywheel-Smoothed Input Torque  Ib-in W
873 . . i ;
V\ f 1 1 [
i ] ‘ \J
: : I i
i 1 3 t
! k=.05 i t l
t 1 i i
I I i i
0 f = l ;
0 90 180 270 360

FIGURE 11-12
Input torque curve for the fourbar linkage in Figure 11-8 after smoothing with a flywheel

the torque curve (see Table 11-1, p. 552) and the average shaft ) to compute the needed
system /s. The physical flywheel's mass moment of inertia /fis then set equal to the re-
quired system /s. But if the moments of inertia of the other rotating elements on the same
driveshaft (such as the motor) are known, the physical flywheel's required /f can be re-
duced by those amounts.

The most efficient flywheel design in terms of maximizing /ffor minimum material
used is one in which the mass is concentrated in its rim and its hub is supported on
spokes, like a carriage wheel. This puts the majority of the mass at the largest radius
possible and minimizes the weight for a given /f Even if a flat, solid circular disk fly-
wheel design is chosen, either for simplicity of manufacture or to obtain a flat surface
for other functions (such as an automobile clutch), the design should be done with an eye
to reducing weight and thus cost. Since in general, / = m,.2, a thin disk of large diame-
ter will need fewer pounds of material to obtain a given / than will a thicker disk of small-
er diameter. Dense materials such as cast iron and steel are the obvious choices for a fly-
wheel. Aluminum is seldom used. Though many metals (lead, gold, silver, platinum) are
more dense than iron and steel, one can seldom get the accounting department's approv-
al to use them in a flywheel.

Figure 11-12 shows the change in the input torque Ti2 for the linkage in Figure 11-8
after the addition of a flywheel sized to provide a coefficient of fluctuation of 0.05. The
oscillation in torque about the unchanged average value is now 5%, much less than what
it was without the flywheel. A much smaller horsepower motor can now be used because
the flywheel is available to absorb the energy returned from the linkage during its cycle.

11.12 A LINKAGE FORCE TRANSMISSION INDEX

The transmission angle was introduced in Chapter 2 and used in subsequent chapters as
an index of merit to predict the kinematic behavior of a linkage. A too-small transmis-
sion angle predicts problems with motion and force transmission in a fourbar linkage.
Unfortunately, the transmission angle has limited application. It is only useful for four-
bar linkages and then only when the input and output torques are applied to links that are
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pivoted to ground (i.e., the crank and rocker). When external forces are applied to the
coupler link, the transmission angle tells nothing about the linkage's behavior.

Holte and Chase [1] define a joint-force index (IP/) which is useful as an indicator
of any linkage's ability to smoothly transmit energy regardless of where the loads are
applied on the linkage. It is applicable to higher-order linkages as well as to the fourbar
linkage. The IPI at any instantaneous position is defined as the ratio of the maximum
static force in any joint of the mechanism to the applied external load. If the external
load is a force, then it is:

JFI = MAX|-Y for all pairs i, j (11.23a)
If the external load is a torque, then it is:

JFI = MAX|-—2 for all pairs i, j (11.23b)

ext

where, in both cases, Fj; is the force in the linkage joint connecting links i and j.

The Fij are calculated from a static force analysis of the linkage. Dynamic forces
can be much greater than static forces if speeds are high. However, if this static force
transmission index indicates a problem in the absence of any dynamic forces, then the
situation will obviously be worse at speed. The largest joint force at each position is used
rather than a composite or average value on the assumption that high friction in anyone
joint is sufficient to hamper linkage performance regardless of the forces at other joints.

Equation 11.23a is dimensionless and so can be used to compare linkages of differ-
ent design and geometry. Equation 11.23b has dimensions of reciprocal length, so cau-
tion must be exercised when comparing designs when the external load is a torque. Then
the units used in any comparison must be the same, and the compared linkages should
be similar in size.

Equations 11.23 apply to anyone instantaneous position of the linkage. As with the
transmission angle, this index must be evaluated for all positions of the linkage over its
expected range of motion and the largest value of that set found. The peak force may
move from pin to pin as the linkage rotates. If the external loads vary with linkage posi-
tion, they can be accounted for in the calculation.

Holte and Chase suggest that the IPI be kept below a value of about 2 for linkages
whose output is a force. Larger values may be tolerable especially if the joints are de-
signed with good bearings that are able to handle the higher loads.

There are some linkage positions in which the IPI can become infinite or indetermi-
nate as when the linkage reaches an immovable position, defined as the input link or in-
put joint being inactive. This is equivalent to a stationary configuration as described in
earlier chapters provided that the input joint is inactive in the particular stationary con-
figuration. These positions need to be identified and avoided in any event, independent
of the determination of any index of merit. In some cases the mechanism may be im-
movable but still capable of supporting aload. See reference [1] for more detailed infor-
mation on these special cases.
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11.13 PRACTICAL CONSIDERATIONS

This chapter has presented some approaches to the computation of dynamic forces in
moving machinery. The newtonian approach gives the most information and is neces-
sary in order to obtain the forces at all pin joints so that stress analyses of the members
can be done. Its application is really quite straightforward, requiring only the creation
of correct free-body diagrams for each member and the application of the two simple
vector equations which express Newton's second law to each free-body. Once these
equations are expanded for each member in the system and placed in standard matrix
form, their solution (with a computer) is a trivial task.

The real work in designing these mechanisms comes in the determination of the
shapes and sizes of the members. In addition to the kinematic data, the force computa-
tion requires only the masses, CG locations, and mass moments of inertia versus those
CGs for its completion. These three geometric parameters completely characterize the
member for dynamic modelling purposes. Even if the link shapes and materials are com-
pletely defined at the outset of the force analysis process (as with the redesign of an ex-
isting system), itis a tedious exercise to calculate the dynamic properties of complicated
shapes. Current solids modelling CAD systems make this step easy by computing these
parameters automatically for any part designed within them.

If, however, you are starting from scratch with your design, the blank-paper syn-
drome will inevitably rear its ugly head. A first approximation of link shapes and selec-
tion of materials must be made in order to create the dynamic parameters needed for a
"first pass" force analysis. A stress analysis of those parts, based on the calculated dy-
namic forces, will invariably find problems that require changes to the part shapes, thus
requiring recalculation of the dynamic properties and recomputation of the dynamic forc-
es and stresses. This process will have to be repeated in circular fashion (iteration-see
Chapter 1, p. 8) until an acceptable design is reached. The advantages of using a com-
puter to do these repetitive calculations is obvious and cannot be overstressed. An equa-
tion solver program such as TKSolver or Mathcad will be a useful aid in this process by
reducing the amount of computer programming necessary.

Students with no design experience are often not sure how to approach this process
of designing parts for dynamic applications. The following suggestions are offered to
get you started. As you gain experience, you will develop your own approach.

It is often useful to create complex shapes from a combination of simple shapes, at
least for first approximation dynamic models. For example, a link could be considered
to be made up of a hollow cylinder at each pivot end, connected by a rectangular prism
along the line of centers. It is easy to calculate the dynamic parameters for each of these
simple shapes and then combine them. The steps would be as follows (repeated for each
link):

1 Calculate the volume, mass, CG location, and mass moments of inertia with respect
to the local CG of each separate part of your built-up link. In our example link these
parts would be the two hollow cylinders and the rectangular prism.

2 Find the location of the composite CG of the assembly of the parts into the link by
the method shown in Section 11.4 (p. 531) and equation 11.3 (p. 524). See also Fig-
ure 11-2 (p. 526).
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3 Use the parallel axis theorem (equation 10.8, p. 497) to transfer the mass moments
of inertia of each part to the common, composite CG for the link. Then add the in-
dividual, transferred I’s of the parts to get the total 7 of the link about its composite
CG. See Section 11.6 (p. 541).

Steps 1 to 3 will create the link geometry data for each link needed for the dynamic
force analysis as derived in this chapter.

4 Do the dynamic force analysis.
5 Do a dynamic stress and deflection analysis of all parts.
6 Redesign the parts and repeat steps 1 to 5 until a satisfactory result is achieved.

Remember that lighter (lower mass) links will have smaller inertial forces on them
and thus could have lower stresses despite their smaller cross sections. Also, smaller
mass moments of inertia of the links can reduce the driving torque requirements, espe-
cially at higher speeds. But be cautious about the dynamic deflections of thin, light links
becoming too large. We are assuming rigid bodies in these analyses. That assumption
will not be valid if the links are too flexible. Always check the deflections as well as the
stresses in your designs.

11,14 REFERENCES ————————————————————.
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11-1 Draw free-body diagrams of the links in the geared fivebar linkage shown in Figure
4-11 (p. 165) and write the dynamic equations to solve for all forces plus the driving
torque. Assemble the symbolic equations in matrix form for solution.

11-2 Draw free-body diagrams of the links in the sixbar linkage shown in Figure 4-12
(p. 167) and write the dynamic equations to solve for all forces plus the driving
torque. Assemble the symbolic equations in matrix form for solution.

*1$11-3  Table P11-1 shows kinematic and geometric data for several slider-crank linkages of
the type and orientation shown in Figure P11-1. The point locations are defined as
described in the text. For the row(s) in the table assigned, use the matrix method of
Section 11.5 (p. 538) and program MATRIX, Mathcad, Matlab, TKSolver, or a matrix
solving calculator to solve for forces and torques at the position shown. Also
compute the shaking force and shaking torque. Consider the coefficient of friction p
between slider and ground to be zero. You may check your solution by opening the
solution files (located in the Solutions folder on the CD-ROM) named P11-03x
(where x is the row letter) into program SLIDER.

* Answers in Appendix F.

* These problems are
suited to solution using
Mathcad, Matlab, or
TKSolver equation solver
programs.

*f114 Repeat Problem 11-3 using the method of virtual work to solve for the input torque
on link 2. Additional data for corresponding rows are given in Table P11-2. § These problems are

w . R X o suited to solution using
11-5 Table P11-3 shows kinematic and geometric data for several pin-jointed fourbar program SLIDER which is

linkages of the type and orientation shown in Figure P11-2. All have 8; = 0. The on the attached CD-ROM.



