
11.0 INTRODUCTION

When kinematic synthesis and analysis have been used to define a geometry and set of
motions for a particular design task, it is logical and convenient to then use a kinetostat-
ic, or inverse dynamics, solution to determine the forces and torques in the system. We
will take that approach in this chapter and concentrate on solving for the forces and
torques that result from, and are required to drive, our kinematic system in such a way as
to provide the designed accelerations. Numerical examples are presented throughout this
chapter. These examples are also provided as disk files for input to either program MA-
TRIX or FOURBAR. These programs are described in Appendix A. The reader is encour-
aged to open the referenced files in these programs and investigate the examples in more
detail. The file names are noted in the discussion of each example.

11.1 NEWTONIAN SOLUTION METHOD

Dynamic force analysis can be done by any of several methods. The one which gives
the most information about forces internal to the mechanism requires only the use of
Newton's law as defined in equations 10.1 (p. 492) and lOA (p. 495). These can be writ-
ten as a summation of all forces and torques in the system.
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These three equations must be written for each moving body in the system which
will lead to a set of linear simultaneous equations for any system. The set of simulta-
neous equations can most conveniently be solved by a matrix method as was shown in
Chapter 5. These equations do not account for the gravitational force (weight) on a link.
If the kinematic accelerations are large compared to gravity, which is often the case, then
the weight forces can be ignored in the dynamic analysis. If the machine members are
very massive or moving slowly with small kinematic accelerations, or both, the weight
of the members may need to be included in the analysis. The weight can be treated as an
external force acting on the CG of the member at a constant angle.

11.2 SINGLE LINK IN PUREROTATION

As a simple example of this solution procedure, consider the single link in pure rotation
shown in Figure 11-la. In any of these kinetostatic dynamic force analysis problems,
the kinematics of the problem must first be fully defined. That is, the angular accelera-
tions of all rotating members and the linear accelerations of the CGs of all moving mem-
bers must be found for all positions of interest. The mass of each member and the mass
moment of inertia 10with respect to each member's CG must also be known. In addi-
tion there may be external forces or torques applied to any member of the system. These
are all shown in the figure.

While this analysis can be approached in many ways, it is useful for the sake of con-
sistency to adopt a particular arrangement of coordinate systems and stick with it. We
present such an approach here which, if carefully followed, will tend to minimize the
chances of error. The reader may wish to develop his or her own approach once the prin-
ciples are understood. The underlying mathematics is invariant, and one can choose co-
ordinate systems for convenience. The vectors which are acting on the dynamic system
in any loading situation are the same at a particular time regardless of how we may de-
cide to resolve them into components for the sake of computation. The solution result
will be the same.

We will first set up a nonrotating, local coordinate system on each moving member,
located at its CG. (In this simple example we have only one moving member.) All ex-
ternally applied forces, whether due to other connected members or to other systems
must then have their points of application located in this local coordinate system. Fig-
ure 11-1b shows a free-body diagram of the moving link 2. The pin joint at 02 on link
2 has a force F 12 due to the mating link I, the x and y components of which are F12x and
F12y' These subscripts are read "force of link I on 2" in the x or y direction. This sub-
script notation scheme will be used consistently to indicate which of the "action-reac-
tion" pair of forces at each joint is being solved for.











be defined with respect to the link's LNCS. Note that these kinematic and applied force
data must be available for all positions of the linkage for which a force analysis is de-
sired. In the following discussion and examples, only one linkage position will be ad-
dressed. The process is identical for each succeeding position and only the calculations
must be repeated. Obviously, a computer will be a valuable aid in accomplishing the
task.

Link 2 in Figure 11-2b shows forces acting on it at each pin joint, designated F 12
and F32. By convention their subscripts denote the force that the adjoining link is exert-
ing on the link being analyzed; that is, F 12 is the force of 1 on 2 and F 32 is the force of3
on 2. Obviously there is also an equal and opposite force at each of these pins which
would be designated as F 21 and F 23, respectively. The choice of which of the members
of these pairs of forces to be solved for is arbitrary. As long as proper bookkeeping is
done, their identities will be maintained.

When we move to link 3, we maintain the same convention of showing forces act-
ing on the link in its free-body diagram. Thus at instant center !z3 we show F 23 acting
on link 3. However, because we showed force F32 acting at the same point on link 2,
this introduces an additional unknown to the problem for which we need an additional
equation. The equation is available from Newton's third law:

Thus we are free to substitute the negative reaction force for any action force at any
joint. This has been done on link 3 in the figure in order to reduce the unknown forces at
that joint to one, namely F 32. The same procedure is followed at each joint with one of
the action-reaction forces arbitrarily chosen to be solved for and its negative reaction ap-
plied to the mating link.

The naming convention used for the position vectors (Rap) which locate the pin
joints with respect to the CG in the link's nonrotating local coordinate system is as fol-
lows. The first subscript (a) denotes the adjoining link to which the position vector
points. The second subscript ( p) denotes the parent link to which the position vector
belongs. Thus in the case oflink 2 in Figure 11-2b, vector R 12 locates the attachment
point of link 1 to link 2, and R32 the attachment point of link 3 to link 2. Note that in
some cases these subscripts will match those of the pin forces shown acting at those
points, but where the negative reaction force has been substituted as described above, the
subscript order of the force and its position vector will not agree. This can lead to confu-
sion and must be carefully watched for typographical errors when setting up the prob-
lem.

Any external forces acting on the links are located in similar fashion with a position
vector to a point on the line of application of the force. This point is given the same let-
ter subscript as that of the external force. Link 3 in the figure shows such an external
force F p acting on it at point P. The position vector Rp locates that point with respect to
the CG. It is important to note that the CG of each link is consistently taken as the point
of reference for all forces acting on that link. Left to its own devices, an unconstrained
body in complex motion will spin about its own CG; thus we analyze its linear acceler-
ation at that point and apply the angular acceleration about the CG as a center.

Equations 11.1 are now written for each moving link. For link 2, with the cross
products expanded:





















7 Solve this system either by inverting matrix A and premultiplying that inverse times matrix
C using a pocket calculator such as the HP-28, or by inputting the values for matrices A and
C to program MATRIX provided with this text which gives the following solution:

Converting the forces to polar coordinates:

(h)

(i)

8 The pin-force magnitudes in (i) are needed to size the pivot pins and links against failure and
to select pivot bearings that will last for the required life of the assembly. The driving torque
T12 defined in (h) is needed to select a motor or other device capable of supplying the power
to drive the system. See Section 2.16 (p. 60) for a brief discussion of motor selection. Is-
sues of stress calculation and failure prevention are beyond the scope of this text, but note
that those calculations cannot be done until a good estimate of the dynamic forces and
torques on the system has been made by methods such as those shown in this example.

This solves the linkage for one position. A new set of values can be put into the A
and C matrices for each position of interest at which a force analysis is needed. Read
the disk file EII-03.mat into program MATRIX to exercise this example. The disk file
EII-03.4br can also be read into program FOURBAR which will run the linkage through
a series of positions starting with the stated parameters as initial conditions. The linkage
will slow to a stop and then run in reverse due to the negative acceleration. The matrix
of equation (g) can be seen within FOURBAR using Dynamics/Solve/Show Matrix.

It is worth noting some general observations about this method at this point. The
solution is done using cartesian coordinates of all forces and position vectors. Before
being placed in the matrices, these vector components must be defined in the global co-
ordinate system (GCS) or in nonrotating, local coordinate systems, parallel to the global
coordinate system, with their origins at the links' CGs (LNCS). Some of the linkage pa-
rameters are normally expressed in such coordinate systems, but some are not, and so
must be converted. The kinematic data should all be computed in the global system or
in parallel, nonrotating, local systems placed at the CGs of individual links. Anyexter-
nal forces on the links must also be defined in the global system.























11.11 CONTROLLING INPUTTORQUE-flYWHEElS

The typically large variation in accelerations within a mechanism can cause significant
oscillations in the torque required to drive it at a constant or near constant speed. The
peak torques needed may be so high as to require an overly large motor to deliver them.
However, the average torque over the cycle, due mainly to losses and external work done,
may often be much smaller than the peak torque. We would like to provide some means
to smooth out these oscillations in torque during the cycle. This will allow us to size the
motor to deliver the average torque rather than the peak torque. One convenient and rel-
atively inexpensive means to this end is the addition of a flywheel to the system.

TORQUE VARIATION Figure 11-8 shows the variation in the input torque for a
crank-rocker fourbar linkage over one full revolution of the drive crank. It is running at
a constant angular velocity of 50 rad/sec. The torque varies a great deal within one cy-
cle of the mechanism, going from a positive peak of 341.7 Ib-in to a negative peak of
-166.41b-in. The average value of this torque over the cycle is only 70.21b-in, being
due to the external work done plus losses. This linkage has only a 12-lb external force
applied to link 3 at the CG and a 25 Ib-in external torque applied to link 4. These small
external loads cannot account for the large variation in input torque required to maintain
constant crank speed. What then is the explanation? The large variations in torque are
evidence of the kinetic energy that is stored in the links as they move. We can think of
the positive pulses of torque as representing energy delivered by the driver (motor) and
stored temporarily in the moving links, and the negative pulses of torque as energy at-
tempting to return from the links to the driver. Unfortunately most motors are designed
to deliver energy but not to take it back. Thus the "returned energy" has no place to go.

Figure 11-9 shows the speed torque characteristic of a permanent magnet (PM) DC
electric motor. Other types of motors will have differently shaped functions that relate
motor speed to torque as shown in Figure 2-32 and 2-33 (pp. 62-63), but all drivers









average, the sum of positive area above an average line is equal to the sum of negative area
below that line.) The integration limits in equation 11.18 are from the shaft angle 8 at which
the shaft (j)is a minimum to the shaft angle 8 at which (j) is a maximum.

3 The minimum (j)will occur after the maximum positive energy has been delivered from the
motor to the load, i.e., at a point (8) where the summation of positive energy (area) in the
torque pulses is at its largest positive value.

4 The maximum (j)will occur after the maximum negative energy has been returned to the load,
i.e., at a point (8) where the summation of energy (area) in the torque pulses is at its largest
negative value.

5 To find these locations in 8 corresponding to the maximum and minimum (j)'s and thus find
the amount of energy needed to be stored in the flywheel, we need to numerically integrate
each pulse of this function from crossover to crossover with the average line. The crossover
points in Figure 11-11 have been labeled A, B, C, and D. (Program FOURBARdoes this inte-
gration for you numerically, using a trapezoidal rule.)

6 The FOURBARprogram prints the table of areas shown in Figure 11-11. The positive and
negative pulses are separately integrated as described above. Reference to the plot of the
torque function will indicate whether a positive or negative pulse is the first encountered in
a particular case. The first pulse in this example is a positive one.

7 The remaining task is to accumulate these pulse areas beginning at an arbitrary crossover (in
this case point A) and proceeding pulse by pulse across the cycle. Table 11-1 shows this pro-
cess and the result.

8 Note in Table 11-1 that the minimum shaft speed occurs after the largest accumulated posi-
tive energy pulse (+200.73 in-lb) has been delivered from the driveshaft to the system. This
delivery of energy slows the motor down. The maximum shaft speed occurs after the largest
accumulated negative energy pulse (-60.32 in-lb) has been received back from the system
by the driveshaft. This return of stored energy will speed up the motor. The total energy
variation is the algebraic difference between these two extreme values, which in this exam-
ple is -261.05 in-lb. This negative energy coming out of the system needs to be absorbed by
the flywheel and then returned to the system during each cycle to smooth the variations in
shaft speed.





the torque curve (see Table 11-1, p. 552) and the average shaft (i) to compute the needed
system Is. The physical flywheel's mass moment of inertia If is then set equal to the re-
quired system Is. But if the moments of inertia of the other rotating elements on the same
driveshaft (such as the motor) are known, the physical flywheel's required If can be re-
duced by those amounts.

The most efficient flywheel design in terms of maximizing Iffor minimum material
used is one in which the mass is concentrated in its rim and its hub is supported on
spokes, like a carriage wheel. This puts the majority of the mass at the largest radius
possible and minimizes the weight for a given If Even if a flat, solid circular disk fly-
wheel design is chosen, either for simplicity of manufacture or to obtain a flat surface
for other functions (such as an automobile clutch), the design should be done with an eye
to reducing weight and thus cost. Since in general, I = m,.2, a thin disk of large diame-
ter will need fewer pounds of material to obtain a given I than will a thicker disk of small-
er diameter. Dense materials such as cast iron and steel are the obvious choices for a fly-
wheel. Aluminum is seldom used. Though many metals (lead, gold, silver, platinum) are
more dense than iron and steel, one can seldom get the accounting department's approv-
al to use them in a flywheel.

Figure 11-12 shows the change in the input torque T12 for the linkage in Figure 11-8
after the addition of a flywheel sized to provide a coefficient of fluctuation of 0.05. The
oscillation in torque about the unchanged average value is now 5%, much less than what
it was without the flywheel. A much smaller horsepower motor can now be used because
the flywheel is available to absorb the energy returned from the linkage during its cycle.

11.12 A LINKAGE FORCE TRANSMISSION INDEX

The transmission angle was introduced in Chapter 2 and used in subsequent chapters as
an index of merit to predict the kinematic behavior of a linkage. A too-small transmis-
sion angle predicts problems with motion and force transmission in a fourbar linkage.
Unfortunately, the transmission angle has limited application. It is only useful for four-
bar linkages and then only when the input and output torques are applied to links that are



pivoted to ground (i.e., the crank and rocker). When external forces are applied to the
coupler link, the transmission angle tells nothing about the linkage's behavior.

Holte and Chase [1] define a joint-force index (IPl) which is useful as an indicator
of any linkage's ability to smoothly transmit energy regardless of where the loads are
applied on the linkage. It is applicable to higher-order linkages as well as to the fourbar
linkage. The IPI at any instantaneous position is defined as the ratio of the maximum
static force in any joint of the mechanism to the applied external load. If the external
load is a force, then it is:

The F ij are calculated from a static force analysis of the linkage. Dynamic forces
can be much greater than static forces if speeds are high. However, if this static force
transmission index indicates a problem in the absence of any dynamic forces, then the
situation will obviously be worse at speed. The largest joint force at each position is used
rather than a composite or average value on the assumption that high friction in anyone
joint is sufficient to hamper linkage performance regardless of the forces at other joints.

Equation 11.23a is dimensionless and so can be used to compare linkages of differ-
ent design and geometry. Equation 11.23b has dimensions of reciprocal length, so cau-
tion must be exercised when comparing designs when the external load is a torque. Then
the units used in any comparison must be the same, and the compared linkages should
be similar in size.

Equations 11.23 apply to anyone instantaneous position of the linkage. As with the
transmission angle, this index must be evaluated for all positions of the linkage over its
expected range of motion and the largest value of that set found. The peak force may
move from pin to pin as the linkage rotates. If the external loads vary with linkage posi-
tion, they can be accounted for in the calculation.

Holte and Chase suggest that the IPI be kept below a value of about 2 for linkages
whose output is a force. Larger values may be tolerable especially if the joints are de-
signed with good bearings that are able to handle the higher loads.

There are some linkage positions in which the IPI can become infinite or indetermi-
nate as when the linkage reaches an immovable position, defined as the input link or in-
put joint being inactive. This is equivalent to a stationary configuration as described in
earlier chapters provided that the input joint is inactive in the particular stationary con-
figuration. These positions need to be identified and avoided in any event, independent
of the determination of any index of merit. In some cases the mechanism may be im-
movable but still capable of supporting a load. See reference [1] for more detailed infor-
mation on these special cases.



11.13 PRACTICAL CONSIDERATIONS

This chapter has presented some approaches to the computation of dynamic forces in
moving machinery. The newtonian approach gives the most information and is neces-
sary in order to obtain the forces at all pin joints so that stress analyses of the members
can be done. Its application is really quite straightforward, requiring only the creation
of correct free-body diagrams for each member and the application of the two simple
vector equations which express Newton's second law to each free-body. Once these
equations are expanded for each member in the system and placed in standard matrix
form, their solution (with a computer) is a trivial task.

The real work in designing these mechanisms comes in the determination of the
shapes and sizes of the members. In addition to the kinematic data, the force computa-
tion requires only the masses, CG locations, and mass moments of inertia versus those
CGs for its completion. These three geometric parameters completely characterize the
member for dynamic modelling purposes. Even if the link shapes and materials are com-
pletely defined at the outset of the force analysis process (as with the redesign of an ex-
isting system), it is a tedious exercise to calculate the dynamic properties of complicated
shapes. Current solids modelling CAD systems make this step easy by computing these
parameters automatically for any part designed within them.

If, however, you are starting from scratch with your design, the blank-paper syn-
drome will inevitably rear its ugly head. A first approximation of link shapes and selec-
tion of materials must be made in order to create the dynamic parameters needed for a
"first pass" force analysis. A stress analysis of those parts, based on the calculated dy-
namic forces, will invariably find problems that require changes to the part shapes, thus
requiring recalculation of the dynamic properties and recomputation of the dynamic forc-
es and stresses. This process will have to be repeated in circular fashion (iteration-see
Chapter 1, p. 8) until an acceptable design is reached. The advantages of using a com-
puter to do these repetitive calculations is obvious and cannot be overstressed. An equa-
tion solver program such as TKSolver or Mathcad will be a useful aid in this process by
reducing the amount of computer programming necessary.

Students with no design experience are often not sure how to approach this process
of designing parts for dynamic applications. The following suggestions are offered to
get you started. As you gain experience, you will develop your own approach.

It is often useful to create complex shapes from a combination of simple shapes, at
least for first approximation dynamic models. For example, a link could be considered
to be made up of a hollow cylinder at each pivot end, connected by a rectangular prism
along the line of centers. It is easy to calculate the dynamic parameters for each of these
simple shapes and then combine them. The steps would be as follows (repeated for each
link):

1 Calculate the volume, mass, CG location, and mass moments of inertia with respect
to the local CG of each separate part of your built-up link. In our example link these
parts would be the two hollow cylinders and the rectangular prism.

2 Find the location of the composite CG of the assembly of the parts into the link by
the method shown in Section 11.4 (p. 531) and equation 11.3 (p. 524). See also Fig-
ure 11-2 (p. 526).




