Question 1

A disk clutch has a single pair of friction surfaces of 250mm outside diameter and 150mm inside diameter. Determine the maximum pressure and torque capacity using the assumption of

- Uniform wear
- Uniform pressure

Given the coefficient of friction is 0.3 and the actuating force is 6 kN.


```
% Uniform wear
% P_w = 2 * pi * p_max * r_i * (r_o - r_i)
% write down what is known
r i = 150/1000/2;
                       %[m]
r_0 = 250/1000/2;
                       %[m]
P_w = 6000/1000;
                       %[N]
P p = 6000/1000;
                       %[N]
mu = 0.3;
                       %[]
% calculating maximum pressure
p_max = P_w / (2 * pi * r_i * (r_o - r_i))
                                                %[kPa]
p_{max} = 254.6479
% Calculating torque
```

p_max = p_max * 1000; %[Pa] T_w = pi * mu * r_i * p_max * (r_o^2 - r_i^2)

 $T_w = 180$

```
% uniform pressure
% calculating maximum pressure
p_max = P_p / (pi * (r_o^2 - r_i^2)) %[kPa]
p_max = 190.9859
% calculating torque
p_max = p_max * 1000; %[Pa]
T_p = (2 * pi * mu * p_max) / 3 * (r_o^3 - r_i^3) %[Nm]
T_p = 183.7500
```

Question 2

A cone clutch has D = 330mm, d = 306 mm and b = 60mm. The friction coefficient is 0.26 and the torque transmitted is 200 Nm. Determine the minimum actuating force by using the uniform pressure and uniform wear models.

% write down wha	t is known
D = 330/1000;	%[m]
d = 306/1000;	%[m]
b = 60/1000;	%[m]
mu = 0.26;	%[]
T = 200;	%[Nm]

Question 3

The band brake shown in the below figure has r = 100 mm, b = 25 mm, $d_9 = 225$ mm, $d_8 = 50$ mm, $d_{10} = 12$ mm, wrapping angle $\phi = 270^{\circ}$, friction coefficient 0.2 and $p_{\text{max}} = 500$ kPa. Determine the braking torque, actuating force.

<pre>% write down what is known b = 25/1000; %[m] p_max = 500000; %[Pa] r = 100/1000; %[m] mu = 0.2; %[] phi = 270; %[deg] d_8 = 50/1000; %[m]</pre>		
<pre>b = 25/1000; %[m] p_max = 500000; %[Pa] r = 100/1000; %[m] mu = 0.2; %[] phi = 270; %[deg] d_8 = 50/1000; %[m]</pre>	% write down what is	s known
	<pre>b = 25/1000; p_max = 500000; r = 100/1000; mu = 0.2; phi = 270; d_8 = 50/1000;</pre>	%[m] %[Pa] %[m] %[deg] %[m]

d_9 = 225/1000; %[m] d_10 = 12/1000; %[m] % Pin % % p_max = F_1 / (b * r) F_1 = p_max * b * r;

Force $F_2 = F_1 e^{-\mu \phi \pi / 180}$

% F_1 / F_2 = exp(-(mu * phi * pi) / 180) F_2 = F_1 * exp(-(mu * phi * pi) / 180) %[N] F_2 = 487.0764 % Taking moments about the hinge % -d_9 * W + d_8 * F_2 - d_10 * F_1 = 0 so that; W = (d_8 * F_2 - d_10 * F_1) / d_9 W = 41.5725

Question 4

Given an electric motor of power 500W and rated speed 3000 rpm. Select a brake for it with the safety factor of 2.

Refer to;

https://www.stearnsbrakes.com/products/motor-brakes

https://vn.misumi-ec.com/vona2/maker/misumi/

https://www.maxongroup.com/maxon/view/content/index

Solution

Since $P = T\omega$

```
% write down what is known
P = 500; %[W]
n = 3000; %[rpm]
% since P = T * omega
```

T = P / (n / 60 * 2 * pi) % [Nm]

T = 1.5915

% with a safety factor of 2

T = 2 * T %[Nm]

T = 3.1831

Some possible solutions

AAB 320 Series

Details	Data	
Size	1.2 - 2.8	
Torque (lb-in)	3 - 50	
Nm	0.34 - 5.6	
Enclosure	Open	
UL Recognized	Insulation System File E125303	

Brake AB 60 S

Mass inertia	1339 gcm ²
Max. speed	8800 rpm
Nominal voltage smoothed	24 V
holding torque	5000 mNm