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Overview
§ Objectives for Design of Experiments (DOE)

§ Outline of the DOE process

§ Classical design

§ Space Filling design
§ Optimal design

§ Criteria for the DOE process
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§ Plan the experiments
□ With limited test bed time what is the best way to gather data? Identify modal points – plan 

experiments.
§ Acquire the data

□ There is always a significant volume of data; automated methods are essential
§ Fit models

□ Models will be quick to fit and accurate and represent engine behaviour
§ Conduct optimisation

□ Using models, identify the combinations of controls that give best engine behaviour

Four major steps in calibration
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Requirements 
capture

Experimental 
Design Data Capture Data Validation

Model build Model validation

Optimisation

Target setting

Calibration 
generation

Calibration 
validation

Experimental Design

Modelling

Optimisation

High Level Overview

Driveability
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NEDC speed and torque points

wCE [rad/s]

T C
E [N

m
]

100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

NEDC speed and torque points



Powertrain Calibration Optimisation

§ Design of Experiments (DOE) provides efficient experimentation
§ DOE is widely used in the process and medical industries

Design of Experiments is used to plan engine testing

k Test Points

2 9

3 27

4 81

5 243

6 729

7 2187

3k factorial experiments 
(i.e. 3 levels, k factors)Torque experiment

Why 3 levels?
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§ Find the variables which influence the output (speed, load, ignition timing ..)
§ Estimate the levels that are of interest (high, low ..)
§ Two levels and k variables gives a 2k design

□ 2k is likely to be too many
□ select a fraction

§ There are many ways to select a fraction
§ Estimate main effects first - then first order interactions - and so on.

Design of Experiments (DOE) - What do you do?

!𝑦! = 𝛽" + 𝛽#𝑥# + 𝛽$𝑥$ + 𝛽%𝑥%+ 𝛽#$𝑥#𝑥$ + 𝛽#%𝑥#𝑥%+ 𝛽$%𝑥$𝑥% + 𝛽##x#$ + 𝛽$$x$$ +𝛽%%x%$

Quadratic surface model 

first order second order higher order
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Why DOE?
□ Much time required for full factorial experiments
□ Characterisation of engine for optimisation
□ The use of DOE improves the yield of information 

compared with ad-hoc experimental methods
□ The result is better use of resources
□ A DOE process allows the inclusion of explicit 

constraints: speed load, EGR limits
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Mathematical Model

𝑦 = 𝑓 𝜷,𝑿 = 𝛽( + 𝑥)𝛽) + 𝑥*𝛽* + 𝑥)𝑥*𝛽) + 𝑥)𝑥*𝛽* + 𝑥)*𝛽)) + 𝑥**𝛽**
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Categories of DOE
□ Classical: Full Factorial, Fractional 

Factorial, Box-Behnken, Central-
Composite

□ Space-filling: Latin Hypercube, Lattice, 
stratified Latin Hypercube

□ Optimal: “alphabet soup” A, D and V 
optimal

Space filling design
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□ Decide on the aim of the experiment.

□ A/B testing

□ Factor screening

□ Response surface modelling

□ Evaluate how much you already know
□ Classic designs:

□ Simple regions (linear models, quadratic models)

□ Space-filling:

□ Low system knowledge

□ Optimal designs:

□ High system knowledge

How to choose different design styles

The DOE 
process is 
iterative
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Terminology (1)
□ Randomisation

□ Randomising the order of experiments so 
as to avoid systematic errors

□ Blocking
□ Explicitly accounting for key factors in the 

planning of experiments – test bed, 
operator

□ Confounding
□ Independent variable a and b are said to be 

confounded when they both influence 
dependent variable c – it is difficult to 
separate out their respective contributions
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Terminology (2)
□ Response variable

□ Measured output value

□ Factors

□ Input variables that can be changed

□ E.g. torque, speed, voltage, frequency, current

□ Interaction

□ Effect of one input factor depends on level of another input factor

!𝑦! = 𝛽" + 𝛽#𝑥# + 𝛽$𝑥$ + 𝛽%𝑥%+ 𝛽#$𝑥#𝑥$ + 𝛽#%𝑥#𝑥%+ 𝛽$%𝑥$𝑥% + 𝛽##x#$ + 𝛽$$x$$ +𝛽%%x%$

Quadratic surface model 

first order second order higher order
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Terminology (3)
□ Levels

□ Specific values of factors (inputs)

□ Replication

□ Completely re-run experiment with same input 
levels

□ Used to determine impact of “noise” 
(measurement error, random effects)

□ Rotatability

□ A design is rotatable if the variance of the 
predicted response at any point x depends only 
on the distance of x from the design centre
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Classical design

1. Identify factors of interest and a response variable

2. Determine appropriate level for each explanatory 
variable

3. Determine a design structure

4. Randomise (take care!!) the order in which each 
set of conditions is run and collect the data e.g. latin
hypercube or sobol sequence

5. Organise the results in order to draw appropriate 
conclusions

6. Replicate to give “noise” information

Key steps in designing an experiment
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Classical Design Example: Optimising a diesel engine combustion system
□ Output/response of interest: BSFC

□ Factors;

□ Overall diameter D, radius r

□ Depth d, Angle of central cone Ac

□ Angle of fuel jets Af, Height of injector h, 
Injection pressure p

□ The number of experiments at 2 
levels = 2k (k=number of variables)

□ k = 3 : 8 experiments
□ k = 4 : 16 experiments
□ k = 7 : 128 experiments

f

q

h

r

D

d

Diesel engine combustion system

Ac

Af
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Classical design: Determine factors, range and variable level
□ Angle of fuel jets Af, height of injector h, injector pressure p

□ Two level values, denoted by + and -

□ Af- = 110o, Af+ = 130o

□ H- = 2mm, H+ = 8mm

□ p- = 800bar, p+ = 1200bar
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Determine the design structure
□ Full factorial design: To list each factor combination exactly 

once

□ Structure the list

□ 1st Column – alternate every 4 rows

□ 2nd Column – alternate every 2 rows

□ 3rd Column – alternate every other row

Experiment design
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Classical design: Organise the results to draw conclusions
□ Run the experiments according to the design

□ To determine what effect changing the level of p, Af and 
h has on BSFC

□ For p
□ ½ (average(-)-average(+)) = -4.5

□ For Af

□ ½((average-) - (average+)) = -1.75

□ For h 
□ ½((average-) - (average+)) = -0.25

Experiment results

main effect
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Classical design: Replications
Factor A

1 2 … j … a

Factor B

1 … … … … … …

2 … … … … … …

… … … … … … …

i … … … yijk … …

… … … … … … …

b … … … … … …

Factor A

1 2 … j … a

Factor B

1 … … … … … …

2 … … … … … …

… … … … … … …

i … … … yijk … …

… … … … … … …

b … … … … … …

Factor A

1 2 … j … a

Factor B

1 … … … … … …

2 … … … … … …

… … … … … … …

i … … … yijk … …

… … … … … … …

b … … … … … … n replications

Two Factors
n Replications

variance
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Quadratic designs

𝑦! = 𝛽" + 𝛽#𝑥# + 𝛽$𝑥$ + 𝛽%𝑥%+ 𝛽#$𝑥#𝑥$ + 𝛽#%𝑥#𝑥%+ 𝛽$%𝑥$𝑥% + 𝛽##x#$ + 𝛽$$x$$ +𝛽%%x%$

Central composite

Box-Behnken design

Classical quadratic designs

Quadratic surface 

Cubic surface

𝑦& = 𝑦! + 𝛽#$%𝑥#𝑥$𝑥% + 𝛽##$𝑥#$𝑥$+ 𝛽##%𝑥#$𝑥% + 𝛽#$$𝑥#𝑥$$ + 𝛽#%%𝑥#𝑥%$ + 𝛽$$%𝑥$$𝑥% +
𝛽$%%𝑥$𝑥%$ + 𝛽###𝑥#%+ 𝛽$$$𝑥$%+ 𝛽%%%𝑥%%

e.g. MBT model, naturally aspirated

𝑀𝐵𝑇
= 22.5 + 7.3𝑅𝑃𝑀 – 3.7𝐿 + 0.6𝑅𝑃𝑀$ + 3.1𝐿$
− 0.6𝑅𝑃𝑀 ⋅ 𝐿 − 2.8𝑅𝑃𝑀 ⋅ 𝐿
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Classical design: Box-Behnken designs
□ The design is intended to fit a quadratic model, containing 

squared terms and products of two factors
□ Suitable for small number of factors (three or less) and at least 

three levels (to get quadratic curvature)
□ The ratio of the number of experimental points to the number of 

coefficients in the range of 1.5 to 2.6
□ More efficient i.e. fewer tests than full factorial

𝑦 = 𝛽( + 𝑥)𝛽) + 𝑥*𝛽* + 𝑥)𝑥*𝛽) + 𝑥)𝑥*𝛽* + 𝑥)*𝛽)) + 𝑥**𝛽**

products of 2 factors squared terms
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Classical design: Box-Behnken designs
□ Midpoints of edges of the input space at the centre 

(avoiding corner/extreme points)

□ Fewer points than fractional factorial

□ A combination of a two-level factorial with an 
incomplete block design.

□ All combinations for the factorial design, while the other 
factors are kept at the central values.

Factor 1 Factor 2 Factor 3

+ - 0

+ + 0

- 0 -

- 0 +

+ 0 -

+ 0 +

0 - -

0 - +

0 + -

0 + +

- - 0

- + 0

0 0 0

Full factorial (27) Box-Behnken (13)

𝑥# = 1
𝑥$ = −1
𝑥% = 0

Incomplete block



Powertrain Calibration Optimisation

Classical design: Central Composite Design (CCD)
□ Used when second order model is 

suspected in 2= design
□ Similar to Box-Behnken with corner and 

extreme points
□ A set of centre points: the medians of the 

values used in the factorial portion –
usually repeated

□ A set of axial points, experimental runs 
identical to the centre points except for 
one factor, which will take on values both 
below and above the median of the two 
factorial levels

Linear term estimation
Quadratic term estimation



Powertrain Calibration Optimisation

§ Start with factorial design (with centre points)
§ Add ‘star’ points to get an estimate of curvature

§ Consider: star points may not be achievable

Classical design: Central Composite Design (CCD)

Central composite design with two factors

𝑎

𝛼 > 𝑎
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Space filling designs
□ Good when little is known about the system under 

study
□ Distributes design points (in hyperspace) as far from 

each other as possible
□ Various strategies for achieving this
□ Fill-out the n-dimensional space that are regularly 

spaced

1 2 3 4 5

1

2

3

4

5
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Space filling: Motivation
□ Predictors for response are often based on 

interpolations
□ Prediction error at any point is relative to its 

distance from closest design point
□ Uneven designs can yield predictors that are 

very inaccurate in sparsely observed parts of 
experimental region

□ Disadvantage: superfluous points may be 
placed in regions of the design space

Space filling design in 3 factors
So what??
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Space filling: Latin Hypercube
□ Scheme for generating design points
□ Efficient algorithm – same number of points for increased 

dimensions (factors)
□ Generate sets of design points that, for an N point design, project 

onto M different levels in each factor. 
□ Try several such sets of randomly generated points and choose the 

one that best satisfies user-specified criteria (augment??)
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Latin Hypercube design: construct an LHD
□ Partition experimental region into a square with M2 cells (M along each dimension)

□ Label the cells with integers from {1,…M} such that a Latin square is obtained, each integer occurs exactly once in 
each row and column

□ Select one of the integers, say i, 

at random

□ Sample one point from each cell 

labelled with I

1
2
3
4
5
6

1 2 3 4 5 6

1
2
3
4
5
6

1 2 3 4 5 6

Not space 
filling!

Both LHD but not both space filling i.e. distributed evenly over the space 

LHD generated may not 

be space filling.  Design 

requirements need to be 

assessed.
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Space filling: Latin Hypercube design
Use measure of spread to assess quality of design

Examples:
□ Maxmin distance design: design D that maximises smallest distance 

between any 2 points in D
□ Minmax distance design: design D that minimises the largest 

distance between any point in the experimental region and the 
design

□ Optimal average distance design: design D that minimises average 
distance between pairs of points in D
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Optimal Designs
Good where;
§ Factorial or fractional factorial require too many runs
§ The design space is constrained

Require good knowledge about the model type -> hence system
§ Formulate purpose of experiment in terms of optimising an objective
§ Select design such that the design (i.e., set of points from experimental 

region) optimises some objective

Example:
§ Fit straight line to given data x=[x1,x2,…xn], response variable y
§ Goal: select design to give most precise (minimum variance) estimate of 

slope

x

x

x

x

D-optimal
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Optimal design: D-Optimality Criterion
§ Linear system

§ The fitted model will be 

Where !𝛽! and !𝛽" are sample based estimates of β1 and β2 (true value)

𝑦 = 𝛽)𝑋) + 𝛽*𝑋*

,𝑦 = -𝛽)𝑋) + -𝛽*𝑋*

D-optimal design 
minimises the 

covariance of the 
parameter 

estimates for a 
specified model
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Optimal design: D-Optimality Criterion
Designs A, B and C. 
All two-factor, six-point designs

Design

-----------------
0.75 0.25
0.75 0.25
0.50 0.50
0.50 0.50
0.25 0.75
0.25 0.75

-----------------
1.0 0.0
1.0 0.0
0.5 0.5
0.5 0.5
0.0 1.0
0.0 1.0

-----------------
1.0 0.0
1.0 0.0
1.0 0.0
0.0 1.0
0.0 1.0
0.0 1.0

BA C

A

B
C

19 20 21

11

10

9

b2

b1

XA XB XC

Confidence region

D-optimal design minimises the 
covariance of the parameter estimates 
for a specified model i.e. main(

)
𝐷 =

𝑋'𝑋 (#

Generate 
candidate list

Select design 
points

Evaluate design

parameter

parameter
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Optimal design: D-Optimality Criterion
□ Table displays three possible six-point designs
□ Figure displays joint confidence region for parameters b1 and b2 on the 

assumption that b1=10, b2=20, and s=0.25
□ The largest ellipse is a 95% joint confidence region for b1 and b2 based 

on design A.
□ The middle-sized ellipse is the corresponding region based on design 

B, while the smallest ellipse is for design C.
□ The joint confidence region gets smaller and smaller, and estimates of 

b1 and b2  have become more and more precise
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Confidence intervals for parameters

b1 b2
Design Low limit High limit Low limit High limit

A 9.25 10.75 19.25 20.75
B 9.55 10.45 19.55 20.45
C 9.60 10.4 19.60 20.4

t table

Need to maximise this
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Optimal design: D-Optimality Criterion
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25.175.1
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50.050.0
50.050.0
25.075.0
25.075.0
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design A

( ) ( ) 5.125.175.1
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25.175.1' 22 =-==XX

Design A is put in 
the form of a 
design matrix and 
covariance matrix

Information
matrix

Determinant of the information
matrix
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Optimal design: D-Optimality Criterion

The relative areas of 
ellipses A, B, and C in 
Figure,  are:

Designs A, B, C 
X’X and |X’X| 
determinants:

41.0:50.0:0.1
9

1:
6

1:
5.1

1 º

Design

ú
û

ù
ê
ë

é
75.125.1
25.175.1

ú
û

ù
ê
ë

é
5.25.0
5.05.2

ú
û

ù
ê
ë

é
30
03

A

B

C

X’X |X’X|

1.5

6.0

9.0

Best design – not 
necessarily
optimal
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Other Optimal designs
• D-optimal designs minimise the covariance estimates of the 

model parameters
• A-optimal designs minimises the average variance of the 

estimates of the model parameters
• V-optimal designs: minimise average prediction variance over 

specific points

n
mymymymy ni )(...)...()()( 21 -++-+-+-
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Summary 
§ Classical design:

§ Linear model: full factorial, fractional factorial
§ Quadratic model : central composite, Box-Behnken design 

§ Space filling: low knowledge about the system
§ Optimal design: know system well and know the model
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