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§ What is a mathematical model?
§ Classification of models
§ Types of models:

• Linear regression
• Polynomial
• Radial basis function

§ Model evaluation

Overview
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§ A model is a mathematical representation of a 
real-life process/system

§ A data model explicitly describes a relationship 
between predictor and response variables

§ Models can take different forms depending on 
the complexity of the relationships

§ Models will, in general, be generated from 
experimental data

§ Models can be also be generated from an 
understanding of the physics but will also 
require some experimental data

What is mathematical model?

pp-spline MBT model
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§ A model is usually constructed as a functional 
relationship between the predictor variables and 
the response variable

§ Consequently, the response can be calculated 
for arbitrary values of the predictors

• Essential for optimisation for example
§ The model becomes a means of rapid access to 

the data for the purpose of evaluation and then 
optimising the calibration 

What is mathematical model?



Powertrain Calibration Optimisation

5

§ Black box
• No knowledge of physics
• Mathematical structure that doesn't relate to physics

§ Grey box
• Some knowledge of physics
• Some of the mathematical structure may relate to physics

§ White box
• Complete knowledge of important/relevant physics
• Mathematical structure is a description of the physics
• Several possible implementations depending on the chosen topology.

Types of model
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§ Empirical
§ Physical

Classification of mathematical models
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§ Discrete time
□ Change of system state/output occurring at finite discreet 

time

□ Continuous time
□ Change of system state/output between points in an infinite

number of steps

□ Static
□ System representation/description built using points 

in steady state or in system equilibrium

□ Dynamic
□ Time variant system. System representation/description that 

changes with time

□ Deterministic
□ Predictable. Fixed input gives fixed outputs

□ Stochastic
□ Involves random variable

Classification of mathematical models
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§ Linear regression fits a data model that is linear in the model 
parameters

§ The most common type of linear regression is a least-squares fit, 
based on reasonable assumptions about experimental error

• We make η 𝑥!, 𝛽 = 𝛽" + 𝛽#𝑥
• To give the relationship 𝑦 = 𝛽" + 𝛽#𝑥 + 𝜖

Types of models - Linear regression

𝑦! = η 𝑥!, 𝛽 + 𝜖!
𝛽 = 𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
𝑥! = 𝑖𝑛𝑝𝑢𝑡 𝑖
𝜖! = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑛𝑜𝑖𝑠𝑒 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡 𝑖
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Types of models - Linear regression – an example

• How can this model be 
checked?

• R2

• Structure of residuals
• Drift
• Missing terms
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Finding the parameters requires minimizing the cost function.

Differentiating with respect to each parameter gives the following expression for the estimate 
of each.

Types of models – Linear regression - Least squares 
fitting of polynomial functions

𝐽 =*
!5#

6

[𝑦! − ( .𝛽" + .𝛽#𝑥!)]7

.𝛽# =
∑𝑦!(𝑥! − 𝑥̅)
∑(𝑥! − 𝑥̅)7
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Types of models - Polynomial - Advantages of polynomial 
functions

Advantages Disadvantages

Well known and understood Poor interpolation (of high order models)

Computationally easy to use Poor extrapolation

Simple in form Poor asymptotic behaviour – finite values 
of x -> finite value

Can contain many hundreds of terms for 
physical (engine) behaviour
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§ The value of a radial function, 𝑓(𝑥 − 𝑐) depends only on its 
distance from the origin/center i.e. point 𝑥 from center 𝑐.

§ An RBF model is made up of basis functions which must be 
shaped and weighted.

§ The basis is usually a Gaussian 
§ The N Gaussian’s have different centers and amplitudes
§ The RBF architecture is that of a network and layers of RBFs 

are used to represent complex functions.

Types of models - Radial basis functions

http://www.it.uu.se/research/project/rbf

𝑦 𝑥 =>
!"#

$

𝑤!𝜙 𝑥 − 𝑥!
Where 𝑤! 𝑖𝑠 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑜𝑓 𝑏𝑎𝑠𝑖𝑠 𝑖
𝑥! 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑒𝑛𝑡𝑒𝑟 𝑖 𝑎𝑛𝑑
𝑁 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑠𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠
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Types of models - Radial basis function
A BMEP response surface 
model using RBF with two 
inputs (torque and speed): 
Parameters requiring training:
1. Weights 𝑤!
2. Centers ci,1 ci,2 

3. Widths σ12 σ22

In Model Based Calibration 
Toolbox (MBC) the training is 
done automatically. It only 
needs training data and the 
maximum number of centers to 
use.
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Larger 𝜎% Smaller 𝜎%
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Types of models - radial basis functions – an example
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• This is the data represented graphically.

• It is a series of data points but must be 
represented as a continuous function.

P = -1:.1:1;
T = [-.9602 -.5770 -.0729  .3771  .6405  .6600  .4609 
...

.1336 -.2013 -.4344 -.5000 -.3930 -.1647  .0988 
...

.3072  .3960  .3449  .1816 -.0312 -.2189 -
.3201];
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Types of models - Radial basis functions - How the basis 
functions may be adjusted
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We take the original basis function and two 
versions at centres (-2, 0 and 1.5) scaled 
differently.
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Types of models - Radial basis functions - The result …
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The fitted function is generated using a MATLAB 
function call, newrb() which allows the ‘quality’ of 
fit to be specified.
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Types of models - radial basis functions – a working 
example (2D video)
• The model output is the sum of 6 

RBFs.

• A target data set is introduced to the 
training algorithm. The algorithm will 
parameterise the model to make sure 
the model is able to output (Blue line) 
same value as the target data set (Red 
dots).

• The widths are optimised using 
Maximum Likelihood Estimation (MLE) 
and the weights are iteratively 
optimised using gradient descent 
optimisation.
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Types of models - Radial basis functions – Width 
variations (2D video)
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§ Cross-correlation functions
§ Correlation plot
§ Error metrics used for evaluating and selecting models:

• Residuals
• RMSE
• R2 (Coefficient of Determination)
• PRESS RMSE/R2 (leave-one-out method)

§ Outliers
§ Types of validation

Model evaluation
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§ Cross-correlation is a measure of 
similarity.

§ Known as sliding dot product or area 
under both signals.

§ Useful to determine the lag between 
two signals.

§ Used in signal processing, image 
recognition, economics, etc.

Model evaluation - Correlation functions
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Model evaluation - Correlation functions
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Model evaluation - Correlation plot

§ Bad correlation. High model 
error. For high BMEP_sigma
the predicted is lower than 
measured BMEP_sigma

§ Good correlation between 
model and measured data.
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Model evaluation - Error - Residuals
• Assuming a model is trained using a linear fit. A 

correlation between the measured dataset and 
model fit is plotted.

• Residuals are simply what is left after the 
model has been fitted - the unexplained 
variation

• Residuals are the difference between the data 
and the model output at each predictor value:

• Residual = data – fit(model)

• For a “good” model we would normally expect 
to see normally distributed residuals i.e.
randomly distributed. Why??
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• RMSE is the root square of the 
mean(norm) of all squares of error

• Model with smallest RMSE is usually 
selected. But RMSE alone doesn’t 
guarantee model fitness because that 
is training RMSE.

• Typically, RMSE (between model and 
validation data) or PRESS RMSE are 
used as an indicator for model 
selection.

Model evaluation - Error - RMSE
For example, an exhaust temp dataset was modeled using 
4 types of model: linear, quadratic, cubic and 4th order 
polynomial. The table below shows the difference of RMSE 
between the models.
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§ R2 (coefficient of determination) gives a measure of the goodness 
of fit by comparing the explained component of the data with the 
unexplained (ratio).

𝑅! = 1 − ""!""
""#$#

Model evaluation - Error - R2

Unexplained variation

Total variation
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Model evaluation - Error - R2

http://en.wikipedia.org/wiki/File:Coefficient_of_Determination.svg

𝑅! = 1 −
𝑆𝑆"##
𝑆𝑆$%$

The squared 
residuals with 
respect to the 
linear regression

The areas of the 
red squares 
represent the 
squared residuals 
with respect to the 
average value.
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Model evaluation - Error – PRESS RMSE
§ The PRESS statistic gives a good indication of 

the predictive power of your model
§ PRESS statistics is a method to validate a 

model without having to use validation data.

§ The same training data is used to validate the 
model.

§ Iteratively, a fraction of training data use as 
validation data and the rest use as training data. 
The cycle is iterated until all fraction of training 
data have been once used for validation data. 
The RMSE are calculated for each iteration. 
Finally, the average of RMSE is calculated.

§ PRESS R2 can be calculated using the same 
procedure

RMSE

RMSE
RMSE

RMSE

RMSE

PRESS RMSE = SUM(RMSE)/k
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Model evaluation - Outliers
• Outliers are usually defined in terms of a normal distribution. Typically points that 

are not within the 10-90% of distribution are declared as outliers.
• The definition of outlier is a subjective matter. It depends on the modeling error, 

PRESS statistics or validation results.
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Model evaluation - Outliers
§ Removing outliers can easily reduce 

RMSE (training) including PRESS 
RMSE of a model.

§ But PRESS RMSE doesn’t 
necessarily improve. In most cases, 
PRESS RMSE will start to increase, 
because the model is not able to 
capture the overall system behavior 
due to loss of information.

§ Data shouldn’t normally be 
removed without good reason.
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§ Validation is the process of taking an independent set of data and checking (using RMSE or R2 as a measure) 
of the quality of the model.

Model evaluation – Types of validation

Type 1:
Calculated purely using all 
training data

Type 2:
Iteratively using a fraction 
of the training data

Type 3:
Calculated using test data set 
1

Type 4:
Calculated using test data set 
2

An inappropriate way to validate and select a 
model based error calculated purely on 
training data

Best method to validate and select a model. 
Doesn’t require extra tests. (Explained on next 
slide – PRESS statistics)

The fraction of data use for validation 
might miss critical part of the model. 
The fraction of data have points 
scattered across the operating region to 
ensure validation data represent the 
whole operating region.

Using a separate validation data is 
recommended unless resources are 
limited. Then, use type 2 for validation. 

Model validation with training data will lead to overconfidence in the model
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§ With an interaction level of 1, there are no terms in the model involving more than one factor. 
For example, for a four-factor cubic, for factor L, you see the terms for L, L2, and L3, but no 
terms involving L and/with other factors. 

§ If you increase the interaction level to 2, under second-order terms you see L2 and also L 
multiplied by each of the other factors; that is, second-order cross-terms (for example, LN, 
LA, and LS).

§ Increase the interaction to 3, and under third-order terms you see L2 multiplied by each of the 
other factors (L2A ,L2N, L2S), L multiplied by other pairs of factors (LNA, LNS, LAS), and L 
multiplied by each of the other factors squared (LN2 ,LA2 , LN2). Interaction level 3 includes 
all third-order cross-terms.

§ For example:

Interaction order


