

Engine Testing & Calibration

Byron Mason Ed Winward

> #InspiringWinners since 1909

Summary

- Why do we need engine testing?
- Types of engine testing
- Test Infrastructure
- Measurement Techniques
- Data Collection and Data Processing
- Repeatability
- Calibration Software

Engine Testing

Why do we need engine testing?

- We can't model all the complexities of an ICE engine sufficiently over all the operating range and over all operating conditions to be able to rely on modelling alone.
- We need to confirm durability and life cycle predictions.
- We sometimes need to collect data to build engine models *e.g. data driven models*.
- We need to **validate** the models we develop.
- Certification.

Types of Engine Testing

1). Steady-State Engine Testing:

- Sequence of engine speed and load (torque) points sometimes may use Intake Manifold Air Pressure (MAP) rather than load.
- Engine is held at each point for a prescribed amount of time **to first stabilise the engine thermally (5-10 min)**.
- At the end of the stabilisation, a steady-state measurement is taken (typically a 1 minute measurement in which each recorded channel is averaged over the one minute).
- OEMs have different steady-state tests for different purposes e.g. daily checks, durability, mapping (calibration).
- **Examples** of steady-state test names used by OEMs 'array test', 'modal test', 'mini-map point test'.

Steady State: e.g. speed-MAP points for a Design of Experiments (DOE)

Types of Engine Testing

2). Transient Engine Testing:

Loughborough

- Usually a speed-load (torque) sequence vs time which the engine is tested over.
- Requires a transient capable dynamometer to precisely absorb large changes in engine load over short time periods (e.g. 100s ms) and also motor the engine in some cases.
- **Examples of official transient cycles**:
	- **NEDC** New European Driving Cycle
	- **WLTP** Worldwide Harmonised Light Vehicle Test **Procedure**
	- **NRTC** Non Road Transient Cycle

WLTP: Vehicle speed vs. time

Engine Speed and Torque for this section (different gear profiles)

Engineer Roles in Industry & University

- **Test Engineer** Design and specify the engine tests, analyse data, report findings.
- **Facilities Engineer** Oversees the test cell facility and mange the infrastructure
	- Mechanical Design and spec. prop shafts, mounting, valves, heat rejection etc.
	- Electrical Engine loom interfacing, power supplies, hybrid systems etc.
- **Instrumentation Engineer** Temps, Pres., Emissions, cylinder pressure etc.
- **Research Engineer** Multi-disciplinary, system requirement setting, component/test system design, system build, software development, system testing, result analysis etc.

Examples of Engine Test Cells

Example: 8 Test Cells at Loughborough University which are focussed on industry supporting research and teaching:

Single Cylinder Research Engines

- Lotus optical engine with fully variable valve train (fuel spray and combustion imaging).
- AVL diesel research engine (Low Temp. combustion, fuels).

Light Duty SI Engines

- Ford 1.0L Eco Boost optical engine.
- Ford 1.0L Eco Boost advanced controls and optimisation engine.

Medium Duty Diesel Engines

- Cat C4.4 diesel optical engine.
- Cat C7.1 diesel engine equipped with electric turbocharger.

Basic Engine Test Infrastructure

Test Cells incorporate a variety of specialised equipment:

- Dynamometer 'Dyno'
- Test Cell Management/Control System
- Heat Rejection Management
- Fuel Supply, Conditioning, Metering
- Ventilation System
- **Exhaust Extraction**
- Shop Air
- Instrumentation
- Instrumentation
• Specialist equipment (e.g. emissions analysers) Dyno

Example: L'boro Test Cell 7

Emissions Measurement - Gaseous

- CO, CO2 (intake & exhaust), NO, NO₂, NOx, HC, O₂, AFR.
- Uses: Aftertreatment development, EGR measurement.
- Accuracy, reliability, robustness are very important.
- Large rack mount benches have been the industry standard.
- These are modular and can be configured as required.
- Heated lines, pre-filtering, individual analysers for each gas.
- Calibration gases (gas bottle racks required to calibrate).
- Ease of maintenance: Complex units and OEM's will typically will have a service contract with the supplier.
- **Response times**: traditional emissions benches typically slow response times **(e.g. 1-5 …+ sec)** which means they **provide only partial insight in fast transients!**

Examples:

- Horiba MEXA-ONE System (or the older 7000 series)
-

https://www.horiba.com/e action/show/Product/mex. AVL AMA i60
action/show/Product/mex. AVL AMA i60

#InspiringWinn

Emissions Measurement - Gaseous

Fast Emissions Measurement:

Fast e.g.:

- ECM 5210 NOx sensor **(200ms)**
	- We use for transient engine out NO_x measurement
- ECM 5230 % EGR Measurement System **(<1 sec)**

Ultra-Fast e.g.:

- Cambustion NDIR Fast CO/CO2 **(T90-10 8ms)**
	- We use for Fast EGR measurement for EGR system characterisation.
- Cambustion CLD500 Fast NOx Analyser (T₉₀₋₁₀ 2ms)
	- We use to optimise engine out NO_x during transients.

Cambustion Fast NDIR Co & CO2 Analyser

Emissions Measurement - Particulates

Examples of Common Specialised Engine Particulate Measurement Systems:

AVL 415S Smoke Meter

- Soot Concentration: FSN or mg/m³
- Based on filter paper method.
- Good reproducibility.
- Steady-state measurements.
- **Single measurement requires several seconds.**
- Large and light duty engines.

AVL 483 Micro Soot

- Soot Concentration: $mg/m³$
- Photo-acoustic principle.
- High sensitivity $(0.01 \mu g/m^3)$, large measurement range (engine out or tailpipe).
- Designed for transient.
- \cdot **T**₉₀₋₁₀ ~1000ms.
- Sensitive to soot only (non-volatile PM).

AVL 439 Opacity Meter

- Opacity: %
- Light intensity method.
- **Transient measurements (10Hz).**
- Low maintenance and suited for transient R&D.

Cambustion DMS 500

- Real time measurement of particle size distributions, number and mass
- Ideal for transient PN R&D
	- **T10-90% 200ms**

Slow Fast Controllering

AVL Flowsonix Air Mass Meter:

Fast Measurements

- Fast measurement devices are increasingly in use to meet requirements for RDE and WLTP.
- Currently at L'boro we are using these cutting edge devices for dynamic optimisation of GDI engine calibration.
- **Examples:** devices for fast flow measurement:
	- AVL Flowsonix Air-Mass Meter (t_{90} < 10ms)
		- Ultrasonic transit-time differential method
		- Small influence on the ICE due to small pressure drop
		- Measurement uncertainty: $+/- 1\%$ of reading, \sim £35k
	- Sentronics FlowSonic LF Fuel Meter (up to 2.2 kHz measurement rate)
		- Developed for F1 and WEC for the FIA
		- Measurement Uncertainty: $+/- 0.5%$ of reading
		- Repeatability +/- 0.15%
		- Compact (\sim 300g), no moving parts, \sim £10k
	- Horiba EXFM-One Exhaust Mass Flow meter $(t_{10-90} < 500 \text{ms})$
		- Ultrasonic method for measuring exhaust gas flow rates directly from a vehicle or engine, \sim £35k

Interaction between the speed of sound c and the velocity of flow v accelerates the ultrasonic pulse on one of the paths (in flow direction) and decelerates the pulse on the other

Sentronics FlowSonic LF Fuel Meter

Horiba EXFM-ONE Exh Flow Meter

Measurement: Other

Other measurements which can undertaken:

- Blow-by (flow rate of engine crank case gasses into engine intake)
- Vibration
- Thermal Imaging
- Electrical (power analyser to measure electrical ancillary efficiency)
- Optical in-cylinder
- Oil sample (oil rheology, soot contamination)

Measurement: Calibration of instrumentation

- Calibration of instrumentation and measuring equipment is very important.
- Temperature and pressure sensors can become faulty or drift and it is important to correct before any critical data may be lost or be unusable.
- Frequency of calibration dependent on the instrumentation, the type of use and the purpose of the test.
- Emissions analysers need to be regularly calibrated to ensure accuracy as they can drift due to changes in ambient conditions (e.g. emissions benches can require calibration several times a day to ensure accuracy).

Finally - Details Matter! Before:

Case Study 1: ECU DC Voltage Fluctuation

- It was found recently when testing an engine at L'boro that the cam control actuators were cycling at a regular frequency.
- Investigation identified that the problem was caused by a fluctuation of the DC voltage of the ECU.
- Traced issue to the charging behaviour of the battery charger used which was causing a DC ripple of \sim 1V.
- Solution was to use the engine alternator to charge the 12V battery which gave a +/ - 0.2V DC voltage at the ECM

After:

Finally - Details Matter!

Case Study 2: Sensor signal noise problem identification and resolution:

- High frequency noise observed on some instrumentation channels which was traced to a switched mode power supply powering the pressure sensors.
- Supply voltage from the power supply contaminated with high frequency noise.
- Changed to high quality laboratory linear power supply.
- **Benefit**: avoided resorting to low-pass signal filtering which would be detrimental as it adds a time delay to the signal and would remove some of the signal dynamics which may be important.

Example: Turbocharger compressor inlet pressure signal clean-up (N.B. different engine operating conditions):

Data Collection
Example: EGR System Pressure Measurement

Steady-State Testing:

- In steady-state testing data can often (but not always!) be time-averaged either by the test system when making a measurement or done in post processing e.g. over 60 sec – 'a Measurement'.
- Sample rates can often be **1Hz to 10Hz** (but not always!).
- Emphasis is normally on accuracy and repeatability over time rather than precise time alignment of signals.
- Stabilisation time prior to measurement is important in some types of test (typically 5-10 min.)
- **Transport delays**: emissions apparatus will have a transport delay (time for sample to reach detector and for the instrument to give a reading) and this can often be ignored in steady-state testing.

at 5000rpm, GDI engine (**1Khz sampling**):

Measured period of Intake and Exhaust. pressure: (5000rpm/60)/2 x 3 = 125 cycles per sec => 1/125 = **0.008s i.e. measuring the EGR path pressure pulsations**

Loughborough iversitv

Data Collection

Transient Testing:

- Time synchronisation of measurements is very important for transient testing.
- Potentially measuring signals with **time resolution of 10ms or higher** and which need to be time synchronised e.g. ignition angle, fast emissions, intake and exhaust pressures etc.
- Data acquisition hardware needs to be capable **of synchronised data acquisition.**
- Basics: Nyquist theorem, sample at least twice as fast as fundamental frequency interested in. (use 1Khz sampling to resolve intake/exhaust pressure pulsations).
- **Use of signal filtering needs to be carefully designed as it can introduce delays or remove signal components of interest!!!**
- **Transport delays are important!!!**

Loughborough niversity

0 to 140Nm ramp – pre-catalyst NOx: 8 sec

0 to 140Nm ramp – pre-catalyst NOx: 0.05 sec

Synchronisation and Data Processing

e.g. MATLAB: corrplot(x) Different Sample Rates & Files – Synchronisation

- Common (sometimes unavoidable) to have multiple systems recording data at different rates and in different files.
- Data processing approaches which re-sample data are often used to combine such data into a single data set.

Examples:

- On Test Cell 7 we sample in excess of 600 channels between 1ms to 100ms) and produce single data files 100s MB (several GB a day).
- A single cylinder pressure data file sampled at 0.5 CAD and several hundreds of cycles is 20 MB.
- On Test Cell 8 the imaging camera captures 10,000 frames per sec (roughly 1 GB data per sec).

At Loughborough we largely use **MATLAB** for test engine data post processing:

- Automated scripts to re-sample data and to time-correct data.
- Convert data into TABLE objects enables very convenient data processing tools in MATLAB to be used to quickly plot and analyse large data sets.
- Many useful functions in MATLAB e.g. corrplot (x) .

Repeatability

- **Measurement repeatability is very important especially when developing solutions for fuel consumption reduction.**
- **Fuel consumption measurement repeatability to <0.5% is very challenging.**
- Very difficult to achieve good repeatability even in a test cell:
	- Changes in ambient conditions.
	- Changes in instrument calibration over time (drift).
	- Engine performance change over time.
	- Fuel quality consistency, oil viscosity change.
- Try to minimise the number of uncontrolled factors:
	- Closed loop control of engine coolant temp, intercooler air out temp, oil cooler temp, fuel supply temp.
	- Adds lots of complexity and cost to system and to tests.

Example: Total fuel consumption (grams) over a 2 minute section of WLTC repeated between August and November 2018 on test cell 7:

 \approx 4g/ 151g = 2.6% change over 4 month period

.oughborough iversity

ECU Calibration Hardware & Software

- ECU calibration requires parameterisation of 100s 1000s of ECU parameters (scalars and maps).
- One OEM has said that there are >10,000 calibration parameters in their strategy.
- **Several specialist software & hardware systems available:**
	- **ETAS**
	- **ATI Vision**

Loughborough **versity**

- **Vector CANape**
- All provide a very similar interface and OEMs often will use one specific software and have agreements in place with supplier.
- Communication with ECU: usually **CAN, XCP etc**.
- These systems also provide additional useful features:
	- APIs to external software (e.g. MATLAB) enables external application integration e.g. MATLAB scripts.
	- External hardware modules for data acquisition (e.g. CSM modules).
	- Rapid prototyping environment for deployment of prototype controls to the engine (can compile Simulink models to run within ATI vision and CANape).

ATI Vision

Vector CANape

ECU Calibration Hardware & Software

• Software such as ATI Vision and Vector CANape have similar functionality and interface elements for interaction with ECUs:

Scalars: e.g. ECU Confidential! reported sensor signals values (CANape):

Maps: Calibration map view and editing (ATI Vision):

Measurement signals: which can be ECU based sensor signals, ECU estimators (e.g. engine torque), ECU control system parameters, ECU diagnostic parameters etc. (CANape):

Comment: at Lboro we are normally given by the OEM **the required a file (.vst for ATI Vision), (.A2L, .db for Vector CANape)** which you import into the calibration software and which tells the software the names of available ECU parameters & maps and their detailed properties so that the software can then interact with them. In some cases a special development ECU is required and sometimes there are security protocols in place which needs specialist software tools from the OEM to unlock the communication. CANape/Vision software is specialist and typically £5k to £10K for a single license.

